Document type	Development Document Confidentiality Confidentia		Confidential		
Document No.		KF-0651-4-202			
Scope		0651			
Summary of safety and clinical performance					
	Related Do	ocument(s)			
Document No.	Docu	Document Name			
KF-0651-4-0169	Clinical E	Clinical Evaluation Report			
KF-0651-0020	PM	PMCF Report			
KF-0651-7-0314-0)4 Periodic Sa	Periodic Safety Update Report			
KF-0651-3-001	Risk Ma	Risk Management Report			

Revision History

Ver.	Revision description (including the evaluation path)	Revisor	Effective Date
1.0	Initial version	wangsiyang	2021.06.23
2.0	Supplemented PMCF data in Chapter 5	wangsiyang	

Table of Contents

Summary	y of safety	and clinical performance
Table of	Contents .	
1.	Identifica	ation the device and the manufacturer4
2.	Intended	use
	2.1	Intended purpose
	2.2	Indications
	2.3	Contraindications
3.	Descripti	on of the device
	3.1	Description of the device
	3.2	Overview of the previous generations device
	3.3	Accessories7
	3.4	Another device
4.	Residual	risks and undesirable effects, warnings and precautions
	4.1	Residual risks and undesirable effects
	4.2	Warnings and precautions
	4.3	Post-Market surveillance (PMS) database research
	4.4	Complaint rates of the specific warning and precautions
5.	The sum	mary of clinical evaluation and post-market clinical follow-up (PMCF)40
	5.1	Summary of clinical data related to equivalent device (if applicable)41
	5.2	Summary of clinical data from conducted investigations of the device before the CE-
	marking	(if applicable)
	5.3	Summary of clinical data from other sources(if applicable)
	5.4	An overall summary of the clinical performance and safety77
	5.5	Ongoing or planned post-market clinical follow-up
6.	Possible	diagnostic or therapeutic alternatives
7.	Suggeste	d profile and training for users
8.	Harmoni	zed standards and CS applied101
9.	Revision	history

1. Identification the device and the manufacturer

Device details	
Name of device	Defibrillator Monitor
Model and type	BeneHeart D5/D6
Basic UDI-DI	69449040AB010000083E
Nomenclature	NA
Classification	III (According to Rule 22 of MDR Annex VIII)
CND code	Z120305
Manufacturer details	
Manufacturer name	Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
Adress	Mindray Building, Keji 12th Road South, High-tech Industrial Park,
	Nanshan, Shenzhen, 518057, P. R. China
SRN	CN-MF-000014156
Authorised Representative	
EC Dopresentative	Shanghai International Holding Corp. GmbH (Europe) Eiffestraße
EC-Representative	80, 20537 Hamburg, Germany
SRN of the EC-Representative	DE-AR-00000001
Notified Body	BSI Group The Netherlands B.V.
NB's single identification	CE 2707
number	CE 2/9/
First CE certification date	2008-12-15

2. Intended use

2.1 Intended purpose

The equipment is intended for external defibrillation, internal defibrillation, synchronized cardioversion and semi-automated external defibrillation (AED). It can also be used for non-invasive external pacing as well as ECG, Resp, SpO2, PR, NIBP, IBP, Temp and CO2 monitoring.

2.2 Indications

External defibrillation/AED/internal defibrillation:

The external defibrillation, AED and internal defibrillation modes are intended for patients with ventricular fibrillation, pulseless ventricular tachycardia and ventricular flutter.

Synchronized cardioversion:

Synchronized cardioversion is intended for the treatment of atrial fibrillation and atrial flutter.

■ Non-invasive external pacing:

Non-invasive external pacing is intended for the treatment of bradycardia and asystole.

Monitoring:

Monitoring is intended for the monitoring of ECG, Resp, SpO2, PR, NIBP, IBP, Temp and CO2 parameters.

2.3 Contraindications

AED

The AED mode is contraindicated in the treatment when the patient is showing any of the following:

- Consciousness
- Breathing
- Detectable pulse or other signs of circulation
- Manual Defibrillation

Manual defibrillation is contraindicated in the treatment when the patient is showing any of the following:

- Consciousness
- Breathing.
- Detectable pulse or other signs of circulation.

3. Description of the device

3.1 Description of the device

External Defibrillation

The manual defibrillation feature uses exponential-truncated biphasic defibrillation technology and performs automatic compensation according to impedance of a patient. The biphasic defibrillation technology has been proved to be advantageous over the monophasic one and extensively applied in the defibrillation industry.

AED

The AED function uses the exponential-truncated biphasic defibrillation technology and the algorithm of a heart rhythm recognition detector to guide operators whether to perform defibrillation treatment.

CPR Feedback

The cardio-pulmonary resuscitation (CPR) sensor analyzes and calculates the compression rate by using the pressure sensor to measure the change of the compress force; The displacement waveform is obtained by quadratic integration of the acceleration signal acquired by the acceleration sensor, recognized, and analyzed and calculated to obtain the compress depth and recovery data.

Mindray Confidential. All Rights Reserved.

The compression rate can also be obtained by calculating the change of the chest impedance, which comes from multifunction electrode pads.

Noninvasive Pacing

The external pacing function imposes the pulse of fixed width on patients at a certain current intensity and frequency. This technology is universal in external pacing currently and is widely applied in defibrillator monitors. The circuit composed of the MCU and operational amplifier is a constant-current source circuit. The MCU, based on the DAC level output and frequency, can control the magnitude and frequency of current flowing through a patient's thoracic impedance.

ECG

An electrocardiogram (ECG) is a variation curve recording the electrical activity of the heart over a cardiac cycle using electrodes placed over the skin, and acquiring the heart's electrical signal to analyze and calculate heart rate (HR) and arrhythmia (ARR). 12 lead ECG interpretation is a widely used technology to diagnose different heart conditions like arrhythmia, structural heart disease, myocardial infarction etc. by analyzing 12 lead ECG waveform.

NIBP

NIBP measures the peripheral arterial blood pressure based on the principle of oscillation.

SpO2

Pulse blood oxygen monitoring uses the spectrophotometry to monitor blood oxygen (measuring based on the different wavelengths of light absorbed by tissues).

Temp

The TEMP module measures body temperature based on the temperature resistance characteristics of the thermistor.

CO2

CO2 gas has a strong absorption peak around the 4.26 μ m infrared light. Based on non-dispersive infrared spectroscopy (NDIR), the absorption volume of signals in the band is measured using the Lambert-Beer law to determine the CO2 concentration during human respiration. Where, I0 and I are the infrared light intensity before and after absorption; α is the absorption coefficient of the measured gas at the wavelength; L is the effective absorption optical length of the measured gas; and C is the concentration of the measured gas. Make that ABS = ln(I0) - ln(I) = α LC. Then, ABS is the CO2 signal absorption volume of the infrared light in the 4.26 μ m band when passing through the CO2 gas at a concentration of C. By calculating the absorption volume, the CO2 gas concentration can be calculated.

IBP

Invasive blood pressure (IBP) measurement directly measures intravascular pressure by means of fluid coupling.

Resp

The RESP module measures the respiration rate using the chest impedance pneumography method.

CPR Filter

CPR Filter is a technology that filters the CPR artifact from the ECG to allow users to see a close approximation of a patient's underlying ECG rhythm during CPR compressions, reducing interruptions in CPR.

3.2 Overview of the previous generations device

NA. BeneHeart D5/ BeneHeart D6 is the first defibrillator of Mindray.

3.3 Accessories

3.3.1 ECG Accessories

3.3.1.1 ECG Electrodes

Model	Specification	Applicable patient	Manufacturer
31499224	10 pcs/pack	Adult	Covidien
2245	50 pcs/pack	Pediatric	3M
2258-3	3 pcs/pack	Neonate	3M

3.3.1.2 12-pin Trunk Cable

Leadwire	Model	Compatible	Туре	Applicable	Manufacturer
supported		with		patient	
3-lead	EV 6202	AHA, IEC	Defibrillation-	Pediatric, neonate	Shenzhen Mindray Bio-
3/5-lead	EV 6201	AHA, IEC	Defibrillation-	Adult, pediatric	Medical Electronics Co.,
12-leadwire	EV 6203	АНА	Defibrillation- proof	Adult, pediatric	
12-leadwire	EV 6204	IEC	Defibrillation- proof		

3.3.1.3 Lead Sets

3-Electrode Lead Sets	Manufacturer

Туре	Compatible	with Model	Applicable patient	Remark		
Clip	IEC	EL6302A EL6304A	Adult, pediatric	/ Long	Shenzhen ——Mindray Medical	Bio-
		EL6306A EL6308A	Neonate Pediatric	/	Electronics Ltd	Со.,
	АНА	EL6301A EL6303A	Adult, pediatric	/ Long	Shenzhen —Mindray Medical	Bio-
		EL6305A EL6307A	Neonate Pediatric	/	Electronics Ltd	Со.,
nap	IEC	EL6302B EL6308B	Adult, pediatric Pediatric	/	Shenzhen — Mindray Medical Electronics Ltd	Bio- Co.,
	AHA	EL6301B EL6307B	Adult, pediatric Pediatric	/	Shenzhen Mindray Medical Electronics Ltd	Bio- Co.,

5-Electrode Lead Sets					Manufacturer
Туре	Compatible with	Model	Applicable patient	Remark	_
Clip	IEC	EL6502A	Adult, pediatric	/	Shenzhen
	IEC	EL6504A		Long	
	АНА	EL6501A		/	Electronics Co.,
	AHA	EL6503A		Long	Ltd
Snap	IEC	EL6502B		/	Shenzhen
	АНА	EL6501B		/	Mindray Bio- Medical

Mindray Confidential. All Rights Reserved.

		Electronics	Со.,
		Ltd	
		1	

10-Electrode Lead Sets					Manufacturer
Туре	Compatible with	Model	Applicable patient	Remark	
Clip	IEC	EL6802A	Adult, pediatric	Limb	Shenzhen
		EL6804A		Chest	— Mindray Bio- Medical
	АНА	EL6801A		Limb	Electronics Co.,
		EL6803A		Chest	Ltd
Snap	IEC	EL6802B	Adult, pediatric	Limb	Shenzhen
		EL6804B		Chest	— Mindray Bio- Medical
	АНА	EL6801B		Limb	Electronics Co.,
		EL6803B		Chest	Ltd

3.3.1.4 Adapting Cable

Description	Compatible with	Туре	Manufacturer
12-pin to 6 pin connectors	AHA, IEC	Adult, pediatric, neonate	Shenzhen Mindray Bio-
			Medical Electronics Co.,
			Ltd

3.3.2 SpO2 Accessories

3.3.2.1 Extension Cables

Module type	Applicable patient	Remark	Manufacturer
Mindray SpO ₂ module	Adult, pediatric, neonate	/	Shenzhen Mindray Bio-
			Medical Electronics
			Co., Ltd
Masimo SpO2 module		8 pins, purple connector	Shenzhen Mindray Bio-
			Medical Electronics
			Co., Ltd
		7 pins, white connector	Shenzhen Mindray Bio-
			Medical Electronics

		Co., Ltd
Nellcor SpO ₂ module	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd

3.3.2.2 SpO2 Sensors

Mindray SpO ₂ module			Manufacturer
Туре	Model	Applicable patient	_
Disposable	518C	Neonate (518C SpO ₂ se	nsorShenzhen Mindray Bio-
		wrap)	Medical Electronics Co., Ltd
Single patient use	520A	Adult	Shenzhen Mindray Bio-
	520P	Pediatric	— Medical Electronics Co., Ltd
	520I	Infant	
	520N	Neonate	
Reusable	DS-100A	Adult	Nellcor Puritan Bennett
	OXI-P/I	Pediatric, infant	Inc.
	OXI-A/N	Adult, neonate	
	518B	Adult, pediatric, neo	nateShenzhen Mindray Bio-
		(Multi-sites)	Medical Electronics Co.,
	512E	Adult (Finger type)	Ltd
	512F		
	512G	Pediatric (Finger type)	
	512H		
	518C	Neonate	

Туре	Model	Applicable patient Remark	Manufacturer
Disposable	FPS-1901	Pediatric, neonateLNCS-NeoPt-L (wrap type)	Masimo
	FPS-1862	Neonate (wrap type) LNCS-Neo-L	
	FPS-1861	Infant (wrap type) LNCS-Inf-L	

	FPS-1860	Pediatric (wrap type) LNCS-Pdt	
	FPS-1859	Adult (wrap type) LNCS-Adt	
Reusable	FPS-1863	Adult (finger clip) LNCS DC-I	Masimo
	FPS-1864	Pediatric (finger clip)LNCS-DCIP	
	2258	Adult, pediatric,LNCS YI	
		neonate	

Nellcor SpO ₂ Mo	Manufacturer		
Туре	Model	Applicable patient	
Disposable	MAX-A	Adult (>30 kg)	Covidien
	MAX-P	Pediatric (10 to 50 kg)	-
	MAX-I	Infant (3 to 20 kg)	
	MAX-N	Neonate (<3 kg), adult	
		(>40 kg)	
Reusable	DS-100A	Adult	Nellcor Puritan Bennett
	OXI-P/I	Pediatric, infant	Inc.
	OXI-A/N	Adult, neonate	

3.3.3 NIBP Accessories

3.3.3.1 NIBP Hoses

Туре	Applicable patient	Manufacturer
Reusable	Adult, pediatric	Shenzhen Mindray Bio-
	Neonate	Medical Electronics Co.,
		Ltd

3.3.3.2 Cuffs

Туре	Model	Applicable	Applied site	Limb	Bladder	Manufacturer
		patient		Circumference	Width	
				(cm)	(cm)	
Reusable	CM1201	Infant	Upper arm	10 to 19	9.2	Shenzhen

	CM1202	Pediatric		18 to 26	12.2	Mindray Bio-
	CM1203	Adult		24 to 35	15.1	Medical
	CM1204	Large adult		33 to 47	18.3	Electronics Co.,
	CM1205	Adult	Thigh	46 to 66	22.5	Ltd
	CM1301	Infant	Upper arm	10 to 19	7.2	
	CM1302	Pediatric		18 to 26	9.8	
	CM1303	Adult		25 to 35	13.1	
	CM1304	Large adult		33 to 47	16.5	
	CM1305	Adult	Thigh	46 to 66	20.5	
Single	CM1500A	Neonate	Upper arm	3.1 to 5.7	2.2	Shenzhen
patient	CM1500B			4.3 to 8	2.9	Mindray Bio-
	CM1500C			5.8 to 10.9	3.8	Medical
	CM1500D			7.1 to 13.1	4.8	Electronics Co.,
	CM1501	Infant		10 to 19	7.2	Ltd
	CM1502	Pediatric		18 to 26	9.8	
	CM1503	Adult		25 to 35	13.1	
	CM1504	Large adult]	33 to 47	16.5	
	CM1505	Adult	Thigh	46 to 66	20.5	

3.3.4 Temp Accessories

3.3.4.1 Extension Cable

Туре	Model	Applicable Temp	Manufacturer
		probe	
Reusable	MR420B	MR411, MR412	Shenzhen Mindray Bio-
			Medical Electronics Co.,
			Ltd

3.3.4.2 Temp Probes

Туре	Model	Applicable patient	Application site	Manufacturer
Reusable	MR401B	Adult	Esophageal/Rectal	Shenzhen Mindray Bio-
	MR403B		Skin	Ltd
	MR402B	Pediatric, neonate	Esophageal/Rectal	

	MR404B			Skin	
Disposable	MR411	Adult, neonate	pediatric,	Esophageal/Rectal	Shenzhen Mindray Bio- Medical Electronics Co.,
	MR412		Skin		Ltd

3.3.4.3 Adapting Cable

Description	Applicable patient	Manufacturer
Temp adapting cable	Adult, pediatric, neonate	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd

3.3.5 IBP Accessories

IBP accessory kit	Description	Manufacturer
6800-30-50876 (Hospira)	12-pin IBP cable set	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
	Disposable IBP transducer	ICU
	IBP transducer holder	HOSPIRA
	Steady Rest for IBP Transducer and	HOSPIRA
	Clamp	
6800-30-50877 (BD)	12-pin IBP cable set	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
	Disposable IBP transducer	BD
	Transducer/Manifold mount	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
IBP adapter cable		Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd

3.3.6 CO2 Accessories

3.3.6.1 Microstream CO₂ Module

Description	Applicable patient	Remark	Manufact	urer
Airway sampling line	Adult, pediatric	Disposable	Oridion Ltd.	Medical1987
Airway sampling line, humidified	Adult, pediatric		Oridion Ltd.	Medical1987
Airway sampling line, humidified	Neonate, infant		Oridion Ltd.	Medical1987
Airway sampling line, humidified	Adult, pediatric	-	Oridion Ltd.	Medical1987
Airway sampling line, long, humidified	Adult, pediatric	-	Oridion Ltd.	Medical1987
Airway sampling line, long, humidified	Neonate, infant		Oridion Ltd.	Medical1987
Nasal sampling line	Adult		Oridion Ltd.	Medical1987

Description	Applicable patient	Remark	Manufacturer
Nasal sampling line	Pediatric	Disposable	Oridion Medical1987
			Ltd.
Nasal sampling line, plus O ₂	Adult		Oridion Medical1987
			Ltd.
Nasal sampling line, plus O ₂	Pediatric		Oridion Medical1987
			Ltd.
Nasal sampling line, long, plus O ₂	Adult		Oridion Medical1987
			Ltd.
Nasal sampling line, long, plus O ₂	Pediatric		Oridion Medical1987
			Ltd.
Nasal sampling line, long	Adult		Oridion Medical1987
			Ltd.
Nasal sampling line, long	Pediatric		Oridion Medical1987
			Ltd.

Nasal sampling line, long	Neonate	Oridion Medical1987
		Ltd.
Nasal sampling line, long, plus O	2 Adult	Oridion Medical1987
		Ltd.
Nasal sampling line, long, plus O	2 Pediatric	Oridion Medical1987
		Ltd.
Nasal sampling line	Adult	Oridion Medical1987
		Ltd.
Nasal sampling line	Pediatric	Oridion Medical1987
		Ltd.

3.3.6.2 Sidestream CO2 Module

Description	Applicable patien	t Remark	Manufacturer
Nasal CO2 sample cannula	Adult	Disposable	Shenzhen Mindray Bio-
	Pediatric Neonate	-	Medical Electronics Co., Ltd
Sampling line, adult 2.5m Sampling line, neonate 2.5m	Adult, pediatric Neonate	Disposable	Shenzhen Mindray Bio- Medical Electronics Co., Ltd
DRYLINE airway adapter	Neonate / /	Disposable Straight, disposable Elbow, disposable	Shenzhen Mindray Bio- Medical Electronics Co., Ltd
DRYLINE II watertrap	Adult, pediatric	Reusable	Shenzhen Mindray Bio- Medical Electronics Co., Ltd

3.3.7 Therapy Accessories

Description	Model	Applicable patient	Remark	Manufacturer
External paddles	MR6601	Adult, pediatric	Reusable	Shenzhen Mindray Bio-
				Medical Electronics Co.,
				Ltd

Multifunction	MR60	Adult	Disposable (5 sets/pack)	Leonhard Lang GmbH
electrode pads	MR61	Pediatric	_	
	MR62	Adult	_	
	MR63	Pediatric		
	1011(05	i culturic		
Cable of electrod	leMR6701	/	Reusable	Shenzhen Mindray Bio-
pads with test loa	d			Medical Electronics Co.,
(50 ohm)				Ltd
Conductive gel	15-25	/	Consumable	PARKER
				LABORATORIES
Internal paddles	MR6501	Pediatric	Reusable, 1 inch without	Shenzhen Mindray Bio-
			button	Medical Electronics Co.,
			Reusable, 1 inch with	Ltd
			button	
	N(D)(502	A 1 1/ 1' / '		-
	MR6502	Adult, pediatric	Reusable, 2 inches	5
			without button	
			Reusable, 2 inches with	1
			button	
	MR6503	Adult	Reusable, 3 inches	3
			without button	
			Reusable, 3 inches with	
			button	
CPR sensor kit	MR6401	/	Reusable, withou	Shenzhen Mindray Bio-
			battery	Medical Electronics Co.,
		1	Davaabla with a battam	Ltd
		/	Reusable, with a battery	
CPR sensor cable	MR6801	/	Reusable	Shenzhen Mindray Bio-
				Medical Electronics Co.,
				Ltd
CPR adhesive tape	MR6921	/	Disposable (3 sets/pack)	Shenzhen Mindray Bio-
				Medical Electronics Co.,
				Ltd

3.3.8 Miscellaneous

Description	Model	Manufacturer
Rechargeable lithium ion battery	LI24I004A	Shenzhen Mindray Bio-
	L1341001A	—Medical Electronics Co.,
		Ltd
Test load	MR6905	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Bedrail hook	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Wi-Fi to 4G router kit	IR615-S-L5-WLAN	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Analog output cable	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Synchronous defibrillation input cable	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Grounding cable	UL1015/14AWG	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
DC/AC adapter	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Patient data management software kit	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
PHIES software kit	/	Shenzhen Mindray Bio-
		Medical Electronics Co.,
		Ltd
Vehicle mount kit	/	Shenzhen Mindray Bio-

	Medical Electronics Co.,
	Ltd

Description	Model	Manufacturer
Carrying case	/	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Conducting gel mount kit	/	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (International)	BatteryFeed 20	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (US)	•	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (Indian)		Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (EU)		Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (Brazilian)	•	Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd
Charger Station kit (UK)		Shenzhen Mindray
		Bio-Medical
		Electronics Co., Ltd

3.4 Another device

The equipment can be connected to a Central Monitoring System (hereinafter called CMS) through wired and wireless networks. The CMS uses the software system of Mindray and the general hospital surgical network.

4. Residual risks and undesirable effects, warnings and precautions

4.1 Residual risks and undesirable effects

Residual risks:

With complete product risk analysis and control, only one residual risk assessment belongs to the "AFAP" level. The table below gives the residual risk and benefit analysis of these hazards:

Item	Energy	Sequence of	Hazardous	harm	Control	Risk
		events	situation		Measure	level
C3.2.1	Energy hazards	High voltage exists in electrode pads and heavy current flows through the myocardium during defibrillation therapy.	High discharge energy and large discharge current lead to myocardial cell damage.	Patient's cardiac muscle is injured due to electric shock during defibrillation therapy.	Defibrillation was performed with Mindray biphasic truncated exponential waveform with better therapeutic efficacy and less myocardial injury to the patient. This wave is similar to the discharge waveform of the AHA- approved model, and its defibrillation effectiveness and safety are equivalent.	AFAP

undesirable effects:

Through clinical data from post-market surveillance activity (including adverse event report analysis and post-marketing clinical follow-up), there is no undesirable effects identified.

After search the literature of similar device, the results of SOTA evaluation shown that undesirable effects may include myocardial damage.

C3.2.1 Risk and Benefit Analysis:

Through the parameter monitoring, medical staff have established sufficient conditions to provide patients with a better medical monitoring environment, and the benefits are obvious.

Although there is also the possibility of false positives and false negatives in parameter monitoring, the impact of false positives and false negatives is limited and will not cause substantial harm to patients.

In addition, the parameter monitoring of the monitor has the advantages of simplicity of equipment, convenient operation, timeliness, economy, etc. compared with other known ones.

Therefore, from the perspective of benefit and risk, monitor parameter monitoring has obvious benefits, controllable risks, and has strong clinical application popularization characteristics.

Defibrillators are life-saving devices used in emergency situations. They have been shown to have a high benefit for patients with underlying diseases that remain undetected until sudden cardiac arrest occurs. The time from collapse to defibrillation is critical in-patient survival. For every minute that passes between collapse and defibrillation, survival rates from VF SCA decrease 7% to 10%.

In conclusion, given the available information above, the defibrillator's support for patients in cardiac arrest who are unconscious, not breathing, or without circulation the probable benefits outweigh the probable risks.

The harm of defibrillation to human body is mainly the damage to myocardial cell by the peak current during defibrillation, and the result of the animal experiment indicates that the peak current (I_{50}) measured under each impedance for Mindray biphasic waveform is significantly smaller than the result measured for the monophasic waveform (with the statistically significant difference P < 0.05), equivalent to that of contrast biphasic waveform. Therefore, it is proved that Mindray biphasic waveform has better safety than that of MDS monophasic waveform, and the safety is equivalent to that of contrast biphasic waveform (P value shows no statistically significant difference).

4.2 Warnings and precautions

• Before putting the system into operation, the operator must verify that the equipment, connecting cables and accessories are in correct working order and operating condition.

• Make sure the synchronous input system is applied to this equipment and the input signal is correct if necessary.

• To avoid risk of electric shock, this equipment must only be connected to a supply mains with protective earth. If the installation does not provide for a protective earth conductor, disconnect it from the power line and operate it on smart lithium-ion batteries.

• Ensure that the equipment is supplied with continuous electric power during work. Sudden power failure leads to the loss of patient data.

• Use and store the equipment in specified environmental condition. The equipment and accessories may not meet the performance specification due to aging, stored or used outside the specified temperature and humidity range.

- This equipment is used for single patient at a time.
- The equipment is not intended to be used within the Magnetic Resonance (MR) environment.

• Before each use, the operator must check the equipment condition to ensure that the equipment is ready for operation.

• Medical electrical equipment which does not incorporate defibrillator protection should be disconnected during defibrillation.

• Do not defibrillate a patient who lies on the wet ground.

• Do not touch the patient and live parts simultaneously.

• Do not touch the patient when connecting the peripheral equipment via the I/O signal ports to prevent patient leakage current from exceeding the requirements specified by the standard.

• Do not rely exclusively on the audible alarm system for patient monitoring. Adjustment of alarm volume to a low level or off may result in a hazard to the patient. Remember that alarm settings should be customized according to different patient situations and always keeping the patient under close surveillance is the most reliable way for safe patient monitoring.

• Do not perform any functional check if the equipment is connected with a patient; otherwise the patient might be shocked.

• Remain attentive to the patient during applying therapy. Delay in delivering a shock may result in a rhythm that was analyzed as shockable converting spontaneously to non-shockable and could result in inappropriate delivery of a shock.

• For the treatment of patients with implantable pacemakers, place electrode pads or paddles away from internal pacemaker generator if possible to help prevent damage to the pacemaker.

• Do not place the equipment or accessories in any position that might cause it to fall on the patient.

• Do not start or operate the equipment unless the setup was verified to be correct.

• To avoid inadvertent disconnection, route all cables in a way to prevent a stumbling hazard. Wrap and secure excess cabling to reduce risk of entanglement or strangulation by patients or personnel.

• If any measurement seems questionable, first check the patient's vital signs by alternate means and then check the equipment for proper functioning.

• Physiological data and alarm messages provided by the equipment should not be used as the sole basis for diagnosis or therapy decisions. They must be used in conjunction with clinical signs and symptoms. Misinterpretation of the measured values or other parameters can endanger the patient.

• Do not touch device connectors, recorder print head, battery connector or other live equipment if in contact with the patient; otherwise patient injury may result.

• To ensure patient safety, use only parts and accessories specified in this manual.

• When disposing of the packaging material, be sure to observe the applicable waste control regulations and keep it out of children's reach.

4.3 Post-Market surveillance (PMS) database research

According to Regulation (EU) 2017/745 Article 84, mindray has established the post-market surveillance system and actively gathering relevant data. By now, there is no serious incidents or field safety corrective action (FSCA) and no corrective action preventive action (CAPA) reported about BeneHeart D5/D6 Defibrillator/Monitor.

In the final collection results, the adverse event rate was 0% and the complaint rate was 0.06%.

Complaint handling and risk control (individual complaint records and trend analysis of complaints) as below:

No.	Complaint No.	Complaint Initiation Year	Product Model	Country	Problem description	Dangerous situations	Whether it is related to the product	Risk involved (Y/N)
1	CP14- JH0068	2014	BeneHeart D6	France	French hospitals complain that the 12-lead ECG accessory of D6 is prone to damage. After multiple communication with the hospital, the detailed information of the exception cannot be obtained and investigation cannot be conducted.	The ECG information cannot be obtained, or the ECG information is incorrect.	NO After multiple communication with the hospital, the detailed information of the exception cannot be obtained and investigation cannot be conducted.	Ν
2	CP-2014- 021	2014	BeneHeart D6	Germany	During resuscitation, the equipment specified above displayed a false ECG rhythm. According to the	TheECGinformationcannotbe	NO There is a serious deviation between	Ν

		display screen, a wide complex	obtained, or the	the information	
		tachycardia was present, with a	ECG	provided by the user	
		frequency of 180/min. The LP 15	information is	and the device log.	
		Physio-Control ECG device from	incorrect.	The user is unwilling	
		the Langenhoven (80-31)		to provide the exact	
		emergency vehicle present at the		information and	
		scene was used in parallel with the		cannot perform	
		ECG device named above (D6).		further investigation.	
		This led to significant deviations in			
		the rhythm. The LP 15 Physio-			
		Control presented asystole cardiac			
		arrest and the ECG device (D6)			
		continued to display wide complex			
		tachycardia. The crew from the			
		Langenhoven emergency vehicle			
		are also due to provide a statement.			
		The device has been taken out of			
		service as a result of this error			
		report.			
		There is a serious deviation between			
		the information provided by the			
		user and the device log. The user is			
		unwilling to provide the exact			

					information and cannot perform			
					further investigation.			
3	CP-2014- 028	2014	BeneHeart D6	Germany	The ECG measurement is inaccurate due to interference. Not a product problem.	The ECG information cannot be obtained, or the ECG information is incorrect.	NO The R&D department combined with the product log analysis indicates that the error may be caused by poor contact of the electrode pads or movement of the patient. Not a product problem.	Ν

								Y;
								Risk items: KF-
						NoNoNoNoThe customer did not perform self-test due to (zeroNoNoThe customer did not manualNo	0651-3-001 Risk	
								Management
						During a		Report: C5.2.1
						patient use	YES	C5.3.10
						event the	When the battery	Current Control
4	CP15-	2015	BeneHeart D6	Ecuador	The battery of BeneHeart D6 failed	device	energy is low, the	Measure:
	JH0323				in less than one month.	inappropriately	device generates an	Real-time battery
						shut down or	alarm.	capacity
						restarted itself.		detection, status
								display, and low
							battery alarm.	
								Risk Level After
								Control Measure:
								Acceptable
					A British hospital has 40 newly		NO	
					installed BeneHeart D6, 9 of them	Defibrillation	The customer did not	
5	CP16-	2016	BeneHeart D6	UK	failed in self test. The confirmed	cannot	perform self-test	N
	JH0017				problem is that the impedance	discharge	according to the	
					detection error is large due to	albenarge	manual	
					incorrect calibration (zero		requirements,	

					calibration and gain calibration) by		resulting in poor self-	
					the user, and the measured value		test of the device.	
					exceeds the detection threshold		This device is not	
					during self-test. After the customer		faulty.	
					uses the calibration method			
					recommended by the Mindray			
					manual for calibration, the problem			
					is solved and the device works			
					normally.			
					The client complains that the device			
					Beneheart D5 does not discharge			
					when the synchronous defibrillation		NO	
					therapy is used for the AF patient.		The panddle is not in	
					Analysis on the device shows that	Defibrillation	good contact with the	
6	CP16-	2016	BeneHeart D5	China	the discharge operation fails due to	cannot	human body during	N
0	JH0040	2010	Beneficant D5	Clillia	automatic release, which may be	discharge	the discharge, so the	1
					related to external factors such as	uisenarge	device cannot	
					the electrode plate is not in good		discharge. Unrelated	
					contact with the human body during		to the device.	
					discharge, and the device functions			
					properly.			

7	CP16- JH0089	2016	BeneHeart D6	China	Beneheart D6 cannot discharge on the patient. According to the analysis and test, the device function is normal. It is speculated that the customer feedback that the device cannot be discharged on the patient may be related to the automatic disarming (too high impedance) caused by such external factors as electrode plate contamination and improper contact between the electrode plate and the human body during the discharge.	Defibrillation cannot discharge	NO The panddle is not in good contact with the human body during the discharge, so the device cannot discharge. Unrelated to the device.	Ν
8	CP16- JH0090	2016	BeneHeart D6	China	High energy charging failure occurred in March, 2016 for Beneheart D6. The device returns to the R&D department for analysis. The function of the device is normal and the problem information complained by the user cannot be reproduced. The device log also has	Defibrillation cannot discharge	NO The customer feedback information is incorrect. In combination with the product record log, there is no adverse event reported by the	Ν

					no exception record.		customer. No	
							problem with this	
							device.	
9	CP16- JH0568	2016	BeneHeart D6	China	Discharge failure during D6 defibrillation in Beijing sanluju hospital. According to the investigation, the problem is that the hospital does not use the conductive paste according to the manual requirements, but uses the ultrasonic coupling agent so that the impedance is too high to be discharged. The device is detected to be normal.	Defibrillation cannot discharge	NO The hospital does not use the conductive paste according to the manual requirements, but uses the ultrasonic coupling agent.No problem with this device.	Ν
10	CP16- JH0497	2016	BeneHeart D6	China	No discharge during the rescue using BeneHeart D6. According to the investigation, the problem is that the hospital does not use the conductive paste according to the manual requirements, but uses the ultrasonic coupling agent so that the impedance is too high to be discharged. The device is	Defibrillation cannot discharge	NO The hospital does not use the conductive paste according to the manual requirements, but uses the ultrasonic coupling agent.No problem with this	N

Mindray Confidential. All Rights Reserved.

					detected to be normal.		device.	
11	CP17- JH0052	2017	BeneHeart D6	China	Suspect no discharge during the rescue using BeneHeart D6. Communicate with the hospital and learn that the patient has asystole and there is no ventricular fibrillation waveform before the BeneHeart D6 defibrillation monitor is used to rescue the patient. The BeneHeart D6 operator's manual specifies that the defibrillation function is applicable to patients with ventricular fibrillation and ventricular tachycardia without respiration and pulse. The BeneHeart D6 defibrillation monitor works properly.	Defibrillation cannot discharge	NO The patient has asystole and there is no ventricular fibrillation waveform before the BeneHeart D6 defibrillation monitor is used to rescue the patient. Not an indication for Intended Use of this device.No problem with this device.	Ν
12	CP17- JH0110	2017	BeneHeart D6	Mexico	The device cannot be turned on. The battery has a burning smell. The BeneHeart D6 in Mexico. Occasional battery-related faults occur. The equipment is made of	Duringapatientuseevent,thedeviceinappropriately	YES	Y; Risk items: KF- 0651-3-001 Risk Management Report: C5.1.13

Mindray Confidential. All Rights Reserved.

					flame-retardant materials and will	shut down or		Current Control
					not burn. This problem may cause	restarted itself.		Measure:
					startup failure.			Design fireproof
								materials for
								equipment
								enclosure
								Risk Level After
								Control Measure:
								Acceptable
					The customer reported that		NO	
					"sparking" occurred when AC	During a	This problem is	
					power was connected. When the AC	patient use	caused by that the	
					power supply is no longer plugged	event the	customer removes	
13	CP17-	2017	BeneHeart D6	China	in, change to battery power and the	, daviaa	the anti-off hook and	N
15	JH0116	2017	Denerreart Do	China	device can be started normally. This	inappropriately	the plug connection	
					problem is caused by that the	shut down or	is unstable during	
					customer removes the anti-off hook	shut down or	long-term use.No	
					and the plug connection is unstable	restarted fiself.	problem with this	
					during long-term use.		device.	

					Using D6 defibrillation monitor in			
					Ya'an people's Hospital, The		NO	
					department doctor judges that		The records of	
					multiple shocks have no effect		multiple	
					based on "the patient's body and		defibrillation	
					skin do not respond to the shock,"		discharges	
					and hopes the manufacturer to		mentioned by the	
					conduct an investigation.		customer indicate	
					Mindray has performed functional	Defibrillation	that all the discharges	
14	CP17-	2017	PanaHaart D6	China	and performance tests on the device,		were successful. The	N
14	JH0124	2017	Deliciteatt Do	Clillia	and all functions are normal without	discharge	absence of obvious	1
					device exception. The records of	uischarge	limb response after	
					multiple defibrillation discharges		defibrillation	
					mentioned by the customer indicate		discharge may be	
					that all the discharges were		related to the	
					successful. The absence of obvious		patient's physical	
					limb response after defibrillation		condition at that	
					discharge may be related to the		time.No problem	
					patient's physical condition at that		with this device.	
					time.			

	CP1904				Henan Provincial Employee Hospital reported that during the out-of-hospital emergency treatment, it was found that the BeneHeart D6 12-lead ECC still	The ECG information cannot be	NO This is ECG	
15	JH00657	2019	BeneHeart D6	China	had waveforms after the patient died. This is ECG mechanical disconnection. Not caused by Mindray products.	obtained, or the ECG information is incorrect.	disconnection.No problem with this device.	Ν
16	CP1906- JH00767	2019	BeneHeart D6	China	During defibrillation in the intervention Department of Ya'an people's Hospital of Sichuan Province, the Department of the hospital said that during the use of 200J defibrillation, the patient's response was weak after discharge, and the ECG had no response. It is confirmed that the information reported by the hospital is incorrect, and there is no "invalid shock, resulting in patient death" event. In addition, the hospital did not raise	Defibrillation cannot discharge	NO There is no "invalid shock, resulting in patient death" event. In addition, the hospital did not raise any problems with the device and only required to replace the device. No problem with this device.	Ν

					any problems with the device and only required to replace the device.			
17	CP1911- JH01050	2019	BENEHEART D6	China	Ya'an People's Hospital of Sichuan Province The hospital thinks that the defibrillator does not discharge. After the investigation, it is confirmed that the user misoperates the shock when it is not fully charged. When the impedance is too high, the shock is released. The device is normal.	Defibrillation cannot discharge	NO The user misoperates the shock when it is not fully charged. When the impedance is too high, the shock is released.No problem with this device.	Ν
18	CP1910- JH01012	2019	BENEHEART D6	France	D6 - Batt failed The D6 is not capable to see the complete battery status and cannot see the real battery status. The user does not detect and maintain the battery regularly as required by the manual, and does not replace the battery for 2 years as required by the manual.	During a patient use event , the device inappropriately shut down or restarted itself.	NO The user does not detect and maintain the battery regularly as required by the manual, and does not replace the battery for 2 years as required by the manual.No problem	N

							with this device.	
19	CP2011- JH01757	2020	BeneHeart D6	China	Sparks on the BENEHEART D6 handle of Jiaokou County Hospital of Traditional Chinese Medicine. After checking the device, the handle is cracked, which should be caused by the customer's falling down during use. The liquid penetrates the handle through the crack, causing the client phenomenon.	Unexpected release of defibrillation energy	NOThe handle iscracked, whichshould be caused bythe customer's fallingdown during use.The liquid penetratesthe handle throughthe crack, causing theclientphenomenon.Noproblem with thisdevice.	Ν

20	CP2011- JH01729	2020	BeneHeart D6	Germany	Feedback from German office: The nurse felt the hand was shocked during the user test. After testing, all the functions of the monitor are normal. 1. The function test is normal. 2. The test results of the contact impedance and leakage current meet the standards, and the safety test is normal.	Unexpected release of defibrillation energy	 NO After testing, all the functions of the monitor are normal. 1. The function test is normal. 2. The test results of the contact impedance and leakage current meet the standards, and the safety test is normal. No problem with this device. 	Ν
21	CP2101- JH01908	2021	BeneHeart D6	China	The D6 waveform is still normal after the patient asystole. This is ECG mechanical disconnection. Not caused by Mindray products.	The ECG information be obtained, or the ECG information is incorrect.	NO This is ECG mechanical disconnection. Not caused by Mindray products.	Ν

22	CP2112- JH02590	2021	BeneHeart D6	China	According to Baoan Central Hospital, D6 cannot discharge. After testing the product functions and checking and analyzing the device logs, the device is normal. Finally, confirmed the device with the medical personnel in the hospital,The discharge function of the device is normal.	Defibrillation cannot discharge	NO The device cannot discharge due to incorrect operation by the customer.No problem with this device.	N
23	CP2101- JH01881	2021	BENEHEART D6	China	Defibrillation Failure in Affiliated Hospital of Shanxi College of Traditional Chinese Medicine. The R&D analyzed the returned log and found that the defibrillator successfully discharged five times on the day of the incident . No exception was found to the devices. The failure of defibrillation rescue is unrelated to the defibrillator and electrode pads, and may be related to the patient's physiological status and rescue time.	Defibrillation cannot discharge	NO The R&D analyzed the returned log and found that the defibrillator successfully discharged five times on the day of the incident . No exception was found to the devices. The failure of defibrillation rescue is unrelated to the	Ν
		defibrillator and						
--	--	-----------------------	--					
		electrode pads, and						
		may be related to the						
		patient's						
		physiological status						
		and rescue time.No						
		problem with this						
		device.						

4.4 Complaint rates of the specific warning and precautions

Warnings and precautions	Complaint No.	Complaint rates
Before putting the system into operation, the operator must verify that the	CP14-JH0068、CP16-JH0089	0.005%
equipment, connecting cables and accessories are in correct working order		
and operating condition.		
• Make sure the synchronous input system is applied to this equipment	0	0.000%
and the input signal is correct if necessary.		
• To avoid risk of electric shock, this equipment must only be connected	CP17-JH0116	0.003%
to a supply mains with protective earth. If the installation does not provide		
for a protective earth conductor, disconnect it from the power line and		

operate it on smart lithium-ion batteries.		
	0	0.0000/
• Ensure that the equipment is supplied with continuous electric power	0	0.00076
during work. Sudden power failure leads to the loss of patient data.		
• Use and store the equipment in specified environmental condition. The	0	0.000%
equipment and accessories may not meet the performance specification		
due to aging, stored or used outside the specified temperature and		
humidity range.		
• This equipment is used for single patient at a time.	0	0.000%
• The equipment is not intended to be used within the Magnetic	0	0.000%
Resonance (MR) environment.		
• Before each use, the operator must check the equipment condition to	CP15-JH0323、CP17-JH0110、CP1910-JH01012、	0.013%
ensure that the equipment is ready for operation.	СР2011-ЈН01757、СР16-ЈН0090	
• Medical electrical equipment which does not incorporate defibrillator	0	0.000%
protection should be disconnected during defibrillation.		
• Do not defibrillate a patient who lies on the wet ground.	0	0.000%
• Do not touch the patient and live parts simultaneously.	CP2011-JH01729	0.003%
• Do not touch the patient when connecting the peripheral equipment via	0	0.000%
the I/O signal ports toprevent patient leakage current from exceeding the		
requirements specified by the standard.		

• Do not rely exclusively on the audible alarm system for patient	0	0.000%
monitoring. Adjustment of alarm volume to a low level or off may result		
in a hazard to the patient. Remember that alarm settings should be		
customized according to different patient situations and always keeping		
the patient under close surveillance is the most reliable way for safe		
patient monitoring.		
• Do not perform any functional check if the equipment is connected with	0	0.000%
a patient; otherwise the patient might be shocked.		
• Remain attentive to the patient during applying therapy. Delay in	0	0.000%
delivering a shock may result in a rhythm that was analyzed as shockable		
converting spontaneously to non-shockable and could result in		
inappropriate delivery of a shock.		
• For the treatment of patients with implantable pacemakers, place	0	0.000%
electrode pads or paddles away from internal pacemaker generator if		
possible to help prevent damage to the pacemaker.		
• Do not place the equipment or accessories in any position that might	0	0.000%
cause it to fall on the patient.		
• Do not start or operate the equipment unless the setup was verified to	CP16-JH0017、CP16-JH0040、CP1911-JH01050	0.008%
be correct.		
• To avoid inadvertent disconnection, route all cables in a way to prevent	0	0.000%
a stumbling hazard. Wrap and secure excess cabling to reduce risk of		
entanglement or strangulation by patients or personnel.		

• If any measurement seems questionable, first check the patient's vital	CP-2014-021、CP17-JH0052	0.005%
signs by alternate means and then check the equipment for proper		
functioning.		
Physiological data and alarm messages provided by the equipment	CP-2014-028、CP1904-JH00657、CP2101-JH01908、	0.010%
should not be used as the sole basis for diagnosis or therapy decisions.	CP17-JH0124	
They must be used in conjunction with clinical signs and symptoms.		
Misinterpretation of the measured values or other parameters can		
endanger the patient.		
• Do not touch device connectors, recorder print head, battery connector	0	0.000%
or other live equipment if in contact with the patient; otherwise patient		
injury may result.		
• To ensure patient safety, use only parts and accessories specified in this	СР16-ЈН0568、СР16-ЈН0497	0.005%
manual.		
• When disposing of the packaging material, be sure to observe the	0	0.000%
applicable waste control regulations and keep it out of children' s reach.		

5. The summary of clinical evaluation and post-market clinical follow-up (PMCF)

The data from the current technology of defibrillation waveforms, standard compliance testing, post-marketing clinical follow-up in China and Europe. It can fully prove that D6 defibrillation monitor can meet clinical safety and effectiveness.

After marketing in EU, we have formulated a detailed post-marketing clinical follow-up plan to collect a certain amount of cases according to statistical requirements to ensure that the External Defibrillation, synchronized cardioversion, Internal Defibrillation, AED, and the Non-invasive external pacing function of the D6 defibrillator can also meet the safety and effectiveness of European users.

5.1 Summary of clinical data related to equivalent device (if applicable)

The Defibrillator/Monitor belongs to the combination of Manual defibrillation, monitor, pacer and AED module, these modules are independent of each other and will not affect other modules when a single module works.

Since the defibrillation module and monitor module of the defibrillation monitor are independent of each other, and the module development of the subject device is based on the previous generation products, the technical characteristics, biological characteristics and clinical technical characteristics of the device are completely the same, and the clinical trial is conducted on the technology of the previous generation products to obtain the clinical data.

The monitor module of BeneHeart D5/ BeneHeart D6 is thus determined to be as safe and effective as the equivalent CE marked devices including BeneVision N12 Patient Monitor, iPM 12 Patient Monitor and BeneView T5 patient monitors.

Administrati ve	Device 1 (subject device) Description of characteristics and reference to specifying documents	Device 2 (marketed device) Description of characteristics and reference to specifying documents	Device 3(marketed device) Description of characteristics and reference to specifying documents	Device 4(marketed device) Description of characteristics and reference to specifying documents	Identified differences or conclusion that there are no differences in the characteristic
Manufacturer	SHENZHEN MINDRAY BIO- MEDICAL ELECTRONICS CO., LTD	SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD	SHENZHEN MINDRAY BIO- MEDICAL ELECTRONICS CO., LTD	SHENZHEN MINDRAY BIO- MEDICAL ELECTRONICS CO., LTD	Same.
Device Trade Name	BeneHeart D5/ BeneHeart D6 Defibrillator/Monitor	BeneVision N12 Patient Monitor	iPM 12 Patient Monitor	BeneView T5 patient monitor	Not applicable

5.2 Summary of clinical data from conducted investigations of the device before the CE-marking (if applicable).

SpO2:

Information of the studied device

model	Beneview T5	Identity	CM-57144714、CM-57144696、CM-57144695
			CM-57144711、CM-57144698、CM-57144700
			CM-57144704、CM-57144646、CM-57144706
			CM-57144693、CM-57144705、CM-43137197
	SPO2 Module		KLA6200009、KLA62000010、KLA62000011
			KLA62000012、KLA62000013、 KLA62000014
			KLA62000015、KLA62000016、KLA62000017
			KLA62000019、KLA62000020、CTC22045792

Intended use of studied device

This BeneView T5 patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2).

Objectives of the study

Though clinical trials to verify the effectiveness and accuracy of the SPO2 measurement function of Mindray's BeneView T5 patient monitor in clinical applications. Summary of study methods

According to the test method recommended by the ISO80601-2-61:2011 SpO2 professional clinical standard, the SpO2 measurement results were compared with

the invasive blood gas analysis measurement values.

Inclusion criteria:

- 1. Subjects must understand clinical trials and participate voluntarily.
- 2. Meet the ASA classification I of the Anesthesia Association.
- 3. The subjects are healthy adults COHb<3%, MetHb<2%, ctHb>l0g/dL.
- 4. Healthy adult subjects need to be able to withstand the minimum medical risk of controlled oxygen reduction to the specified level in the clinical trial protocol.

Exclusion criteria:

- 1. The subject has any systemic disease.
- 2. Subject is methemoglobin.
- 3. Subjects do not understand clinical trials and their risks.
- 4. Smoker
- 5. Pregnancy
- 6. Subject has symptoms or history of peripheral ischemia
- 7. The age of the subject must not be less than 18 years old
- 8. Other unqualified conditions identified by cliniciants

Primary and secondary endpoint

The acceptance criteria and data analysis are as follows:

Accuracy: The measurement range of SpO2 is $0\%\sim100\%$, and the measurement error is $\pm3\%$ in the range of $70\%\sim100\%$. And the measurement range of PR is $20\sim300$ bpm, and the measurement error is ±3 bpm in the range of $20\sim300$ bpm.

Requirements for patients: Each probe should test at least 10 subjects, and a total of at least 200 sets of comparative data are obtained for each type of subjects.

Results

A total of 20 subjects were completed in this trial, and each subject was subject to 20 comparison tests. The results are as follows:

Table1 Analysis of SpO2 clinical trial data

SpO2 probe	Probe Type	Probed Site	Index	Accuracy	Acceptance Criterion	Conclusion
512F Adul	Adult	Finger	SPO2	1.1013	≤2	Meet the requirement
5121	<i>i</i> fuurt	Tinger	PR	2.4619	≤ 3	Meet the requirement
512H	Pediatric	Finger	SPO2	1.1529	≤2	Meet the requirement
51211	rediatrie	Tinger	PR	2.3752	≤ 3	Meet the requirement
512F	Adult	Finger	SPO2	1.2572	≤2	Meet the requirement
5121	<i>i</i> iduit	Tinger	PR	2.1972	≤ 3	Meet the requirement
512C	Pediatric	Finger	SPO2	1.3547	≤2	Meet the requirement
5120		Tinger	PR	1.2057	≤ 3	Meet the requirement
518B	Neonate	Foot	SPO2	1.3804	≤2	Meet the requirement
5100		1000	PR	1.5186	≤ 3	Meet the requirement
520A	Adult	Foot	SPO2	1.2773	≤2	Meet the requirement
52011		1000	PR	2.1689	≤ 3	Meet the requirement
520P	Pediatric	Foot	SPO2	1.1658	≤2	Meet the requirement
5201	i culutite	1000	PR	2.2028	≤ 3	Meet the requirement
5201	Infant	Toe	SPO2	1.3123	≤2	Meet the requirement
5201	intuitt	100	PR	2.3677	≤ 3	Meet the requirement
520N	Neonate	Foot	SPO2	1.3577	≤2	Meet the requirement
320IN	Treoffate	1000	PR	2.1644	≤ 3	Meet the requirement

Conclution

The effectiveness and accuracy of the SPO2 measurement function of Mindray's BeneView T5 patient monitor meet the ISO 81060-2:2013 SPO2 professional clinical standard.

NIBP:

Information of the studied device

model	BeneVision N12	Identity	F8-6C000031
			F8-6C000033
			F8-6C000039
	NIBP Module		KLA75001549
	(MPM 3.0)		KLA75001544
			KLA75001563
			KLA75001547

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the NIBP measurement function of Mindray's BeneVision N12 patient monitor in clinical applications.

Summary of study methods

According to the trial method recommended in the ISO81060-2:2013 NIBP professional clinical standard, the data of adult/pediatric group (3 years old and older) and neonate group (3 years old and younger) were compared with invasive blood pressure.

Group	Attributes	Abstract
adult/pediatric (3	Inclusion criteria	1. Select people aged 3 years and over who have undergone arterial intubation due to clinical needs for
years old and older)		diagnosis to participate in clinical trials.
compared with		2. Subjects need to understand the clinical trial and agree to participate.
invasive blood		3. If the subject is underage or the subject does not have the cognitive ability, the legal guardian of subject
pressure		must understand the clinical trial and agree to the subject to participate. If the subject has cognitive ability,
		he should also understand the content of the trial and participate voluntarily.
	Exclusion criteria	Subjects with severe shock, use of a heart lung machine, upper extremity infection heart or arterial
		malformations (excluding those after surgical correction).
	Number of the cases	According to the trial method compared with invasive blood pressure recommended in the ISO 81060-2:2013
		NIBP professional clinical standard, the number of Subjects for adult/pediatric group (3 years old and older)
		must not be less than 20 cases.
adult/pediatric (3	Inclusion criteria	1. Select people aged 3 years and over who have undergone arterial intubation due to clinical needs for
years old and older)		diagnosis to participate in clinical trials.
compared with		2. Subjects need to understand the clinical trial and agree to participate.
auscultation		3. If the subject is underage or the subject does not have the cognitive ability, the legal guardian of subject
		must understand the clinical trial and agree to the subject to participate. If the subject has cognitive ability,
		he should also understand the content of the trial and participate voluntarily.
	Exclusion criteria	Subjects with severe shock, use of a heart lung machine, upper extremity infection heart or arterial
		malformations (excluding those after surgical correction)
	Number of the cases	According to the trial method compared with auscultation recommended in the ISO 81060-2:2013 NIBP

		professional clinical standard, the number of Subjects for adult/pediatric group (3 years old and older) must not
		be less than 85 cases included at least 35 subjects aged 3~12 years.
Neonate (3 years old	Inclusion criteria	1. Select people aged 3 years and younger who have undergone arterial intubation due to clinical needs for
and younger)		diagnosis to participate in clinical trials.
compared with		2. The legal guardian of subject must understand the clinical trial and agree to the subject to participate. If the
invasive blood		subject has cognitive ability, he should also understand the content of the trial and participate voluntarily.
pressure	Exclusion criteria	Subjects with severe shock, use of a heart lung machine, upper extremity infection heart, arterial malformations
		(excluding those after surgical correction) or severe arrhythmia.
	Number of the cases	According to the trial method compared with invasive blood pressure recommended in the ISO 81060-2:2013
		NIBP professional clinical standard, the number of Subjects for group (3 years old and younger) must not be
		less than 18 cases.

Main evaluation index: The absolute value of the mean of the difference between the systolic/diastolic/mean pressure measured by the tested device and the reference device does not exceed 5.0 mmHg, and the standard deviation does not exceed 8.0 mmHg. If results do not comply with any one of the two criteria, the tested device does not meet the requirement in ISO81060-2:2013 (E).

Results

A total of 20 subjects including11men and 9 women in the adult/pediatric group are tested, and the gender and age distribution of the subjects meet the standard requirements. The results are as follows:

All Data		Number of	Range		Mean Deviation (mmHg)	Sta	andard Deviation	(mmHg)
		Data Groups	(mmHg)	Results	Acceptance Criterion	Conclusion	Results	Acceptance Criterion	Conclusion
Tested method vs	SBP	200	86~191	-3.9	Absolute value ≤ 5.0	Meet the requirement	1.4	≤ 8.0	Meet the requirement
invasive blood	DBP	200	40~113	-3.7	Absolute value ≤ 5.0	Meet the requirement	1.3	≤ 8.0	Meet the requirement
pressure	MBP	200	62~135	-3.8	Absolute value ≤ 5.0	Meet the requirement	1.1	≤ 8.0	Meet the requirement

Table2 NIBP clinical trial data	analysis for	adults/pediatric
---------------------------------	--------------	------------------

A total of 85 subjects including 30 men and 55 women in the adult/pediatric group are tested, and the gender and age distribution of the subjects meet the standard requirements. The results are as follows:

Table3 NIBP clinical trial data	analysis for	adults/pediatric
---------------------------------	--------------	------------------

	Normhan af	Danga	Me	an Deviation (n	nmHg)	S	Standard Deviation	on (mmHg)
All Data	Data Groups	(mmHg)	Results	Acceptance Criterion	Conclusion	Results	Acceptance Criterion	Conclusion

Tested method vs auscultation	SBP	255	75~218	4.0	Absolute value ≤ 5.0	Meet the requirement	5.5	≤ 8.0	Meet the requirement
	DBP	255	34~121	-1.9	Absolute value ≤ 5.0	Meet the requirement	4.6	≤ 8.0	Meet the requirement

A total of 18 subjects in the neonate group are tested, and the gender and age distribution of the subjects meet the standard requirements. The results are as follows:

		Number of	Range		Mean Deviation (mmH	Standard Deviation (mmHg)			
All E	Data	Data Groups	(mmHg)	Results Acceptance Criterion		Conclusion	Results	Acceptance Criterion	Conclusion
Tested method vs	SBP	180	40~117	4.5	Absolute value ≤ 5.0	Meet the requirement	1.8	≤ 8.0	Meet the requirement
method vs invasive blood	DBP	180	21~80	4.1	Absolute value ≤ 5.0	Meet the requirement	1.7	≤ 8.0	Meet the requirement
pressure	MBP	180	27~93	4.7	Absolute value ≤ 5.0	Meet the requirement	2.0	≤ 8.0	Meet the requirement

Conclution

The effectiveness and accuracy of the NIBP measurement function of Mindray's BeneVision N12 patient monitor meet the ISO 81060-2:2013 NIBP professional clinical standard.

ECG:

Information of the studied device

device under test	iPM 12 patient monitor
reference device	BeneView T5 patient monitor (Manufacturer: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.)

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the ECG measurement function of Mindray's ipM 12 patient monitor in clinical applications.

Summary of study methods

- Use the iPM 12 patient monitor (Device Under Test (DUT)) to monitor ECG for selected subjects, and use the Beneview T5 monitor (Reference Device (RCT)) to monitor the above parameters at the same time. Through this clinical trial, determine the consistent equivalence of the DUT and RCT in terms of the monitoring performance of the ECG parameters.
- 2) Record clearly and in detail: The information of the experimental subjects of the clinical trial; the environmental information of the monitoring; the information of the trial (see the clinical trial record form).
- 3) ECG monitoring. On the subject's body, proceed as follows:
- Attach two sets of cardiac electrodes adjacent to each other according to the five-lead connection method; or attach two sets of cardiac electrodes adjacent to each

other according to the three-lead connection method;

- Then connect the ECG lead wires of the DUT and the RCT respectively.
- Turn on the ST segment analysis and arrhythmia monitoring functions of the DUT and the RCT.
- Turn on the DUT and the RCT and observe the ECG waveform of lead II. During the observation process, you can switch to other leads to evaluate the overall situation of ECG monitoring.
- Record the HR value and the ST segment values of all leads every 3 to 5 minutes, and obtain 20 sets of data.

Results

Trial data and processing results:

HR (General monitoring)

Statistical item	Number of Data Sets	Mean deviation (bpm)	Standard deviation (bpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
HR	1340	0.034	0.51	1119	98 (7 3%)	123
				(83.5%)	98 (7.3%)	(9.2%)

Statistic results of respiratory rate

HR (Diagnosis mode)

HR statistical results in diagnosis mode

		Statistical item	Number	Mean deviation	Standard deviation	Mean ± SD	Mean ± SD~	Mean±2SD
--	--	------------------	--------	----------------	--------------------	-----------	------------	----------

	of Data Sets	(bpm)	(bpm)	Data within range	Mean±2SD Data within range	Data outside range
HR	1340	0.028	0.64	1053 (78.6%)	208 (15.5%)	79 (5.9%)

ST segment

Statistical item	Number of Data Sets	Mean deviation (mV)	Standard deviation (mV)	Mean ± SD Data within range	Mean ± SD~ Mean±2SD Data within range	Mean±2SD Data outside range
ST- I	1300	0	0.01	1270 (97.7%)	0	30 (2.3%)
ST-II	1300	0	0.01	1255 (93.6%)	0	45 (3.4%)
ST-III	1300	0	0.01	1255 (93.6%)	0	45 (3.4%)
ST-aVR	1300	0	0.01	1259 (94.4%)	0	41 (3.1%)
SP-aVL	1300	0	0.01	1265 (95.4%)	0	35 (2.6%)

Statistical results of ST segment

Conclusions

During the clinical trial, all subjects are in good condition, and none of the subjects have discomfort symptoms or adverse reactions due to the use of Mindray iPM 12 Patient Monitor with ECG module for monitoring. Therefore, it can be considered safe to use the Mindray ECG module for related parameter monitoring. Clinical performance of ECG function meets SOTA benchmark.

IBP:

Information of the studied device

device under test	iPM 12 patient monitor
reference device	BeneView T5 patient monitor (Manufacturer: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.)

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the IBP measurement function of Mindray's ipM 12 patient monitor in clinical applications.

Summary of study methods

(1) Use the iPM 12 patient monitor (Device Under Test (DUT)) to monitor IBP for selected subjects, and use the Beneview T5 monitor (Reference Device (RCT)) to monitor the above parameters at the same time. Through this clinical trial, determine the consistent equivalence of the DUT and RCT in terms of the monitoring performance of the IBP parameters.

(2) Record clearly and in detail: The information of the experimental subjects of the clinical trial; the environmental information of the monitoring; the information of the time and place of the trial (see the clinical trial record form).

(3) IBP monitoring. On the subject's body, proceed as follows:

• Learn the blood supply of the branch before puncture and catheterization. For subjects who underwent radial artery puncture, perform the AllenS test, and perform radial artery puncture for those with normal Allen-S test results. For subjects who underwent dorsal pedis artery puncture, learn the blood supply of the posterior tibial artery, and perform the dorsal pedis artery puncture only after ensuring that the blood supply is good.

- Before the first comparative measurement, calibrate the. pressure for the DUT and RCT.
- Fill the tubing system of the pressure tube and sensor with normal saline, making sure there are no air bubbles in the tubing.
- Perform arterial puncture (radial artery or dorsal pedis artery, as noted on the record form), and connect a manometric tube containing a heparin solution.
- Connect the pressure measuring tube to the pressure tubes and sensors of the DUT and the RCT respectively through the three-way valve switch,
- and zero the pressure sensors of the DUT and the RCT respectively.
- At the same time, directly measure the arterial blood pressure, and record synchronous measurement data of systolic blood pressure, mean blood pressure and diastolic blood pressure every 3 to 5 minutes; obtain 20 sets of data.

Results

Acceptance Criteria:

- IBP: Mean deviation ≤ ± 1mmHg, standard deviation ≤ 5mmHg.
- IBP PR: Mean deviation $\leq \pm 1$ bpm, standard deviation ≤ 2 bpm.

Trial data and processing results:

Systolic pressure

Statistic results of IBP systolic pressure

Statistical item	Number of Data	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD	Mean±SD~ Mean±2SD	Mean±2SD
------------------	-------------------	-------------------------	-----------------------------	-----------	----------------------	----------

	Sets			Data within range	Data within range	Data outside range
IDD ava	1240	0.24	2.20	1076	141	123
IDF-Sys	1340 0.24	2.39	(80.3%)	(10.5%)	(9.2%)	

MBP

Statistic results of IBP MBP

Statistical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
IBP-mean	1340	0.22	2.53	1063 (79.3%)	176 (13.2%)	101 (7.5%)

DBP

Statistic results of IBP DBP

Statistical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
------------------	---------------------------	-------------------------	-----------------------------	--------------------------------	---	--------------------------------

Conel	usions
Conci	usions

During the clinical trial, all subjects are in good condition, and none of the subjects have discomfort symptoms or adverse reactions due to the use of Mindray iPM 12 Patient Monitor with IBP module for monitoring. Therefore, it can be considered safe to use the Mindray IBP module for related parameter monitoring. Clinical performance of IBP function meets SOTA benchmark.

(79.8%)

(13.5%)

(6.7%)

Temp:

Information of the studied device

device under test	iPM 12 patient monitor				
reference device	BeneView T5 patient monitor (Manufacturer: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.)				

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the Temp measurement function of Mindray's ipM 12 patient monitor in clinical applications.

Summary of study methods

(1) Use the iPM 12 patient monitor (Device Under Test (DUT)) to monitor Temp for selected subjects, and use the Beneview T5 monitor (Reference Device (RCT)) to monitor the above parameters at the same time. Through this clinical trial, determine the consistent equivalence of the DUT and RCT in terms of the monitoring performance of the Temp parameters.

(2) Record clearly and in detail: The information of the experimental subjects of the clinical trial; the environmental information of the monitoring; the information of the time and place of the trial (see the clinical trial record form).

(3) Body temperature(Temp) monitoring.

- For subjects who need body temperature monitoring clinically, use the body surface temperature probe to compare body temperature.
- Adhere the body temperature probes of the DUT and the RCT adjacent to the subject's body (The axilla is the first choice, and other parts should be indicated in the case report form).
- Record a pair of body temperature values every 3 to 5 minutes. Obtain 20 pairs of data.

Results

Trial data and processing results:

Body temperature

Statistic results of body temperature

Statistical in	rem of Data Sets	Mean deviation (°C)	Standard deviation (°C)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
----------------	---------------------	------------------------	----------------------------	--------------------------------	---	--------------------------------

				806	403	131
Temp	1340	-0.01	0.09	(60.1%)	(30.1%)	(9.8%)

Conclusions

During the clinical trial, all subjects are in good condition, and none of the subjects have discomfort symptoms or adverse reactions due to the use of Mindray iPM 12 Patient Monitor with Temp module for monitoring. Therefore, it can be considered safe to use the Mindray Temp module for related parameter monitoring. Clinical performance of Temp function meets SOTA benchmark.

CO2:

Information of the studied device

device under test	iPM 12 patient monitor				
reference device	BeneView T5 patient monitor (Manufacturer: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.)				

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the CO2 measurement function of Mindray's ipM 12 patient monitor in clinical applications.

Summary of study methods

(1) Use the iPM 12 patient monitor (Device Under Test (DUT)) to monitor CO2 for selected subjects, and use the Beneview T5 monitor (Reference Device (RCT)) to monitor the above parameters at the same time. Through this clinical trial, determine the consistent equivalence of the DUT and RCT in terms of the monitoring performance of the CO2 parameters.

(2) Record clearly and in detail: The information of the experimental subjects of the clinical trial; the environmental information of the monitoring; the information of the time and place of the trial (see the clinical trial record form).

(3) CO2 monitoring. On the subject's body, proceed as follows:

• Set the operation mode to measurement mode, and set the flow rate, gas compensation, and humidity compensation correctly.

• Select the correct type of water tank to connect the sampling tube, connect it to the CO2 module, and connect the DUT and the RCT to the respiration airway at the same time through a three-way valve.

• After the CO2 module finishes preheating and enters the measurement state, record a set of EtCO2, InsCO2 and aWRR values every 3 to 5 minutes and obtain 20 sets of data.

Results

Acceptance Criteria: Consistency requirements of EtCO2 and InsCO2 measurement results: Mean deviation $\leq \pm 2$ mmHg, standard deviation ≤ 5 mmHg.

Trial data and processing results:

Statistical results of ETCO2 measurements

Statistical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
------------------	---------------------------	-------------------------	-----------------------------	--------------------------------	---	--------------------------------

E+CO: 1240	1240	240 0.020	0.71	1102	144	94
EICOI	1340	-0.029	0.71	(82.2%)	(10.7%)	(7.0%)

Statistical results of InsCO2 measurements

Statistic	results	of In	sCO2
-----------	---------	-------	------

Statistical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
InsCOi	1340	-0.05	0.49	994 (74.2%)	194 (14.5%)	152 (11.3%)

Statistical results of awRR measurements

Statistical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
InsCOi	1340	0.06	0.28	1221 (91.2%)	0	119 (8.8%)

Conclusions

During the clinical trial, all subjects are in good condition, and none of the subjects have discomfort symptoms or adverse reactions due to the use of Mindray iPM 12 Patient Monitor with CO2 module for monitoring. Therefore, it can be considered safe to use the Mindray CO2 module for related parameter monitoring. Clinical performance of CO2 function meets SOTA benchmark.

RESP:

Information of the studied device

device under test	iPM 12 patient monitor		
reference device	BeneView T5 patient monitor (Manufacturer: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.)		

Intended use of studied device

This patient monitor is intended to be used for monitoring, displaying, reviewing, storing and transferring of multiple physiological parameters including ECG, heart rate (HR), respiration (Resp), temperature (Temp), SpO2, pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), cardiac output (C.O.), carbon dioxide (CO2), oxygen (O2), anesthetic gas (AG), impedance cardiograph (ICG), bispectral index (BIS), respiration mechanics (RM), continuous cardiac output(CCO), central venous oxygen saturation(ScvO2), electroencephalograph (EEG), neuromuscular transmission (NMT), regional oxygen saturation (rSO2).

Objectives of the study

Though clinical trials to verify the safety and effectiveness of the CO2 measurement function of Mindray's ipM 12 patient monitor in clinical applications.

Summary of study methods

(1) Use the iPM 12 patient monitor (Device Under Test (DUT)) to monitor RESP for selected subjects, and use the Beneview T5 monitor (Reference Device (RCT)) to monitor the above parameters at the same time. Through this clinical trial, determine the consistent equivalence of the DUT and RCT in terms of the monitoring performance of the RESP parameters.

(2) Record clearly and in detail: The information of the experimental subjects of the clinical trial; the environmental information of the monitoring; the information of the time and place of the trial (see the clinical trial record form).

(3) RESP monitoring. On the subject's body, proceed as follows:

• Attach two sets of cardiac electrodes adjacent to each other according to the five-lead connection method; or attach two sets of cardiac electrodes adjacent to each other according to the three-lead connection method;

- Then connect the ECG lead wires of the DUT and the RCT respectively.
- Turn on the DUT and the RCT and record the respiratory rate (RR) value every 3 to 5 minutes to obtain 20 sets of data.
- Select the respiratory lead I or II, observe the respiratory waveform of the corresponding lead, and record the selected respiratory lead in the case report form.

Results

Trial data and processing results:

Respiratory rate

Statistic results of respiratory rate

Statis	stical item	Number of Data Sets	Mean deviation (rpm)	Standard deviation (rpm)	Mean ± SD Data within range	Mean±SD~ Mean±2SD Data within range	Mean±2SD Data outside range
RR		1340	0.06	0.32	1192	0	148

		(88.9%)	(11.1%)

Conclusions

During the clinical trial, all subjects are in good condition, and none of the subjects have discomfort symptoms or adverse reactions due to the use of Mindray iPM 12 Patient Monitor with RESP module for monitoring. Therefore, it can be considered safe to use the Mindray RESP module for related parameter monitoring. Clinical performance of RESP function meets SOTA benchmark.

CPR Feedback:

In late 2017, the Emergency Department of Shenzhen Second People's Hospital used an open, paired and equivalent verification method. On the Laerdal simulation people, the subject pasted Zoll real-CPR onto the compress point of the simulation people, onto which the Mindray's CPR sensor was then superimposed. Compression data of total 69 subjects were collected. All data analysis sets were consistent. This study had no expulsion or exclusion cases. All included subjects completed the study. Demographic indicators including age and gender met design expectations. All subjects had received professional CPR training.

Study Product

The CPR feedback performance test report of BeneHeart D3 is applicable to BeneHeart D6 for the following reasons:

The CPR sensor is used to measure the compression depth, compression rate and interruption time. The measurement performance is determined by the CPR sensor itselt, independent of the defibrillator (D3 and D6), D3 and D6 are only used to display the measure results. So, the evaluation results for connecting D3 also apply to D6.

Control Product

Primary reference device: Laerdal simulator equipped with Laerdal tablet PC.

Secondary reference device: Zoll real-CPR equipped with Zoll X series defibrillation monitor.

Primary endpoints are:

Device	Average	Standard deviation	95%CI	Equivalent boundary value interval	Conclusion
Primary reference device - device under test	-1.27	3.14	-1.44, -1.10	(-5, +5)	Meet equivalence requirements

Statistics of compress depth

Statistics of compress rate

Device	Average	Standard deviation	95%CI	Equivalent boundary value interval	Conclusion
Primary reference device - device under	-0.68	3.01	-0.84, -0.52	(-2, +2)	Meet equivalence requirements

1	test			
	test			

Note: The measured value of compress rate and compress depth is the difference between the primary reference device and the device under test.

Secondary endpoints are:

Statistics of compress depth

Device name	Average deviation	Standard deviation	Result
Primary reference device - device under test	1.76	2.23	1.76 < 3.18, 2.23 < 3.94, therefore, the device under test outweighs the
Primary reference device - secondary reference device	3.18	3.94	secondary reference device

Statistics of compress rate

Device name	Average deviation	Standard deviation	Result
Primary reference			1.54<2.05,
device - device under	1.54	2.15	2.15<3.35, therefore,
test			the device under test
Primary reference			outweighs the
device - secondary	2.05	3.35	secondary reference
reference device			device

According to principle and design analysis, lab test report and compress comparison test on a simulator by clinical medical staff for the CPR Feedback of a defibrillation monitor, we can fully prove that the CPR Feedback function of Mindray defibrillator is designed to expectations, product performance is equivalent to the simulator and can be ready for clinical use.

5.3 Summary of clinical data from other sources(if applicable)

Post-clinical follow-up from China:

External Defibrillation

> Objective

To demonstrate the performance and safety of external defibrillation function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio.

General clinical Information

1. Subject Selection

• Ages eligible for selection: Adult and pediatric.

- Sexes eligible for selection: All
- Subjects have already used the External Defibrillation function of Mindray defibrillator monitors
 Sample Size Calculation

2. Sample Size Calculation

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 87.9 % (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 142 clinical cases are expected to be collected in this PMCF.

3. Process

Mindray will continuously collect clinical cases from at least 2 hospitals. The clinical cases will be recorded and filled in the PMCF form by the medical staff according to the actual treatment conditions. Submit the signed PMCF form to Mindray for confirmation and statistics.

> Adopted Statistical Analysis Method and Acceptance Criteria

1. Statistical Analysis Method

The defibrillation success rate equals the total number of success cases divided by the total number of tracked cases. Descriptive statistics of baseline parameters such as patient age, gende are also collected.

2. Acceptance Criteria

The final result of defibrillation success rate is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the confidence interval is above the target value 87.9%, the clinical performance of the product under application shall be proved to meet the requirement of recognized level in the industry.

> Result

174 clinical cases have been collected from 50 hospitals until 2022, with details as follows:

Gender Distribution of the Cases:

Gender	Number of Cases
Male	125
Female	49
Total	174

Age Distribution of the Cases:

populations	Age	Number of Cases
	1 month -<3 year	2
pediatric	3-<12 year	2
	12-<18 year	3
	18-<40 year	17
adult	40-<60 year	60
	≥60 year	90
	Total	174

Indications Distribution of the Cases:

Indications	Number of Cases
Ventricular fibrillation	148
Pulseless ventricular tachycardia	19
Others	7
Total	174

Successful/Failed Cases:

Successful Cases	Failed Cases	Total	success rate
164	8	174	94.3%

This PMCF collects 174 cases and 164 cases are successful, the final result of defibrillation success rate is **94.3%**. Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 94.3% is calculated as follows: (90.9%, 97.7%), the lower limit 90.9% is above the target value 87.9%.

The final result of defibrillation success rate is 94.3% (95%Cl: 90.9%, 97.7%). the lower limit 90.9% is above the target value **87.9**%, the clinical performance of the external defibrillation function of the product in question has been proved to meet the requirement of recognized level in the industry.

No adverse events related to the device are found through surveys.

Synchronized Cardioversion

> Objective

To demonstrate the performance and safety of synchronized cardioversion function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio.

General clinical Information

1. Subject Selection

- Ages eligible for selection: Adult and pediatric.
- Sexes eligible for selection: All
- Subjects have already used the Synchronized Cardioversion function of Mindray defibrillator monitors

2. Sample Size Calculation

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 88.9% (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 181 clinical cases are expected to be collected in this PMCF.

3. Process

Mindray will continuously collect clinical cases from at least 2 hospitals. The clinical cases will be recorded and filled in the PMCF form by the medical staff according to the actual treatment conditions. Submit the signed PMCF form to Mindray for confirmation and statistics.

> Adopted Statistical Analysis Method and Acceptance Criteria

1. Statistical Analysis Method

The cardioversion success rate equals the total number of success cases divided by the total number of tracked cases. Descriptive statistics of baseline parameters such as patient age, gender are also collected.

2. Acceptance Criteria

The final result of cardioversion success rate is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the confidence interval is above the target value 88.9%, the clinical performance of the product under application shall be proved to meet the requirement of recognized level in the industry.

> Result

185 clinical cases have been collected from 4 hospitals until 2022, with details as follows:

Gender Distribution of the Cases:

Gender	Number of Cases
Male	104
Female	81
Total	185

Age Distribution of the Cases:

populations	Age	Number of Cases
	1 month -<3 year	2
pediatric	3-<12 year	4
	12-<18 year	20
	18-<40 year	27
adult	40-<60 year	64
	≥60 year	68
	Total	185

Indications Distribution of the Cases:

Indications	Number of Cases
Atrial fibrillation	130
Others	55
Total	185

Successful/Failed Cases:

Successful Cases	Failed Cases	Total	success rate
175	10	185	94.6%

This PMCF collects 185 cases and 175 cases are successful, the final result of defibrillation success rate is **94.6%**. Based on Confidence interval calculation formula:

$$\mathbf{p} \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 94.6% is calculated as follows:(91.4%, 97.8%), the lower limit 91.4% is above the target value 88.9%.

The final result of defibrillation success rate is 94.6% (95%Cl: 91.4%, 97.8%). the lower limit 91.4% is above the target value **88.9**%, the clinical performance of the external defibrillation function of the product in question has been proved to meet the requirement of recognized level in the industry.

No adverse events related to the device are found through surveys.

Internal Defibrillation

> Objective

To demonstrate the performance and safety of internal defibrillation function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio.

General clinical Information

1. Subject Selection

- Ages eligible for selection: Adult and pediatric.
- Sexes eligible for selection: All
- Subjects have already used the Internal Defibrillation function of Mindray defibrillator monitors

2. Sample Size Calculation

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 94.2 % (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 135 clinical cases are expected to be collected in this PMCF.

3. Process

Mindray will continuously collect clinical cases from at least 2 hospitals. The clinical cases will be recorded and filled in the PMCF form by the medical staff according to the actual treatment conditions. Submit the signed PMCF form to Mindray for confirmation and statistics.

> Adopted Statistical Analysis Method and Acceptance Criteria

1. Statistical Analysis Method

The defibrillation success rate equals the total number of success cases divided by the total number of tracked cases. Descriptive statistics of baseline parameters such as patient age, gender are also collected.

2. Acceptance Criteria

The final result of defibrillation success rate is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the confidence interval is above the target value 94.2%, the clinical performance of the product under application shall be proved to meet the requirement of recognized level in the industry.

> Result

176 clinical cases have been collected from 4 hospitals until 2022, with details as follows:

Gender Distribution of the Cases:

Gender	Number of Cases
Male	125
Female	52
Total	177

Age Distribution of the Cases:

populations	Age	Number of Cases
	1 month -< 3 year	2
pediatric	3-<12 year	1
	12-<18 year	21
	18-<40 year	50
adult	40-<60 year	40
	≥60 year	63
	Total	177

Indications Distribution of the Cases:

Indications	Number of Cases
Ventricular fibrillation	141
Ventricular tachycardia	13
Others	23
Total	177

Successful/Failed Cases:

Successful Cases	Failed Cases	Total	success rate
173	4	177	97.7%

This PMCF collects 177 cases and 173 cases are successful, the final result of defibrillation success rate is **97.7%**. Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 97.7% is calculated as follows:(95.5%, 99.9%), the lower limit 95.5% is above the target value 94.2%.

The final result of defibrillation success rate is 97.7% (95%Cl: 95.5%, 99.9%). the lower limit 95.5% is above the target value 94.2%, the clinical performance of the Internal Defibrillation function of the product in question has been proved to meet the requirement of recognized level in the industry.

Semi-automated external defibrillation (AED)

> Objective

To demonstrate the performance and safety of Semi-automated external defibrillation function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio.

General clinical Information

1. Subject Selection

- Ages eligible for selection: Adult and pediatric.
- Sexes eligible for selection: All
- Subjects have already used the Semi-automated external defibrillation function of Mindray defibrillator monitors

2. Sample Size Calculation

For the defibrillation success rate

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 87.9 % (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 142 clinical cases are expected to be collected in this PMCF.

For the sensitivity

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 90 % (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 251 clinical cases are expected to be collected in this PMCF.

For the specificity

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 95 % (P0), Pt set to 99%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 172 clinical cases are expected to be collected in this PMCF.

3. Process

Mindray will continuously collect clinical data of Semi-automated external defibrillation function. Mindray exports the clinical data from the device for analysis and statistics.

> Adopted Statistical Analysis Method and Acceptance Criteria

1. Statistical Analysis Method

According to the PMCF Plan, this clinical follow-up mainly verifies the defibrillation success rate and sensitivity/ specificity of the device in question, and must include at least 180 shockable rhythms cases and 10 non-shockable rhythms/conditions cases.

The defibrillation success rate equals the total number of success cases divided by the total number of tracked cases. Descriptive statistics of baseline parameters such as patient age, gende are also collected.

The sensitivity of device is the number of true positive shockable rhythms that have been correctly classed as shockable, expressed as a percentage of the total number of shockable rhythms: A/(A+C)*100%.

The specificity is the number of organized or perfusing rhythms that have been correctly classed as non-shockable rhythms/conditions by the algorithm, and expressed as a percentage of the total number of non-shockable rhythms/conditions: D/(B+D)*100%.

2. Acceptance Criteria

The final result of defibrillation success rate is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the confidence interval is above the target value 87.9%, the clinical performance of the product under application shall be proved to meet the requirement of recognized level in the industry.

The final result of sensitivity and specificity is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the sensitivity confidence interval is above the target value 90% and the lower limit of the specificity confidence interval is above the target value 95%, the clinical performance of the product in question shall be proved to meet the requirement of recognized level in the industry.

Result

220 clinical cases have been collected until 2022, with details as follows:

Gender Distribution of the Cases:

Gender	Number of Cases
Male	52
Female	168
Total	220

Age Distribution of the Cases:

populations	Age	Number of Cases
	1 month -< 3 year	7
pediatric	3-<12 year	23
	12-<18 year	36
	18-<40 year	54
adult	40-<60 year	67
	≥60 year	33
Total	220	
-------	-----	

Defibrillation success rate:

Number of total Cases	success cases	success rate
150	140	93.3%

Positive: shockable rhythms cases. Negative: non-shockable rhythms/conditions cases.

AED	results of Expert diagnostic with ECG		Total
ALD	Positive	Negative	/
Positive	419	16	435
Negative	19	1205	1224
Total	438	1221	1659

Sensitivity

A/(A+C)*100%=95.7%

Specificity

D/(B+D)*100%=98.7%

95% Confidence Interval Calculation:

For the defibrillation success rate of the device in question:

This PMCF collects 150 cases and 140 cases are successful, the final result of defibrillation success rate is **93.3%**. Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 92.9% is calculated as follows: (89.3%, 97.3%), the lower limit 89.3% is above the target value 87.9%.

For the sensitivity of the device in question:

This PMCF collects 438 shockable rhythms cases and 419 correct identification cases, the final result of sensitivity is **95.7%**. Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 95.7% is calculated as follows: (93.9%, 97.5%), the lower limit 93.9% is above the target value 90%.

For the specificity of the device in question:

This PMCF collects 1221 non-shockable rhythms/conditions cases and 1205 correct identification cases, the final result of specificity is **98.7%**. Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 98.7% is calculated as follows: (98.1%, 99.3%), the

lower limit 98.1% is above the target value 95%.

> Conclusion:

The result of defibrillation success rate is 93.3% (95%Cl: **89.3**%, **97.3**%), the lower limit **89.3%** is upper than the target value **87.9**%.

The result of sensitivity rate is 95.7% (95%Cl: 93.9%, 97.5%), the lower limit 93.9% is upper than the target value 90%.

The result of specificity rate is 98.7% (95%Cl: **98.1%**, **99.3%**), the lower limit **98.1%** is upper than the target value **95**%.

The clinical performance of the AED function of the product in question has been proved to meet the requirement of recognized level in the industry.

Non-invasive external pacing

> PMCF Objective

To demonstrate the performance and safety of Non-invasive external pacing function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio, post-marked clinical follow-up activity have been undertaken by manufacture.

Description of PMCF survey

To demonstrate the performance and safety of AED function, identifying previously unknown side-effects and ensuring the continued acceptability of the benefit-risk ratio, Mindray did post-market follow-up survey activity.

This Post Market clinical follow-up survey was an observational, post-market study to monitor and learn more about the use of defibrillator/monitor, whose sample size criteria based from the endpoint of state-of-the-art. This study collected information from health care professional user who used BeneHeart D5/D6 defibrillator/monitor.

216 clinical cases have collected from 2 hospitals by the BeneHeart D5/D6 Defibrillator/Monitor until 2022.

- General clinical Information
 - 1. Subject Selection
 - Ages eligible for selection: Adult and pediatric.
 - Sexes eligible for selection: All
 - Subjects have already used the Non-invasive pacing function of Mindray defibrillator monitors
 - 2. Sample Size Calculation

This PMCF adopts the single-group design method, the OPC (Objective performance criteria) is set to 58.9 % (P0), Pt set to 95%. We also determine α =0.05, β =0.2, power (1- β)=0.8, clinical drop-out rate γ = 0.05. Based on the Formula for Estimating Sample Size of a Single Group Target Value Test, a minimum of 190 clinical cases are expected to be collected in this PMCF.

3. Process

Mindray will continuously collect clinical cases from at least 2 hospitals. The clinical cases will be

recorded and filled in the PMCF form by the medical staff according to the actual treatment conditions. Submit the signed PMCF form to Mindray for confirmation and statistics.

- Adopted Statistical Analysis Method and Acceptance Criteria
 - 1. Statistical Analysis Method

The pacing success rate equals the total number of success cases divided by the total number of tracked cases. Descriptive statistics of baseline parameters such as patient age, gender are also collected.

2. Acceptance Criteria

The final result of pacing success rate is obtained and its two-sided 95% confidence interval is calculated. If the lower limit of the confidence interval is above the target value 58.9%, the clinical performance of the product under application shall be proved to meet the requirement of SOTA criteria in the industry.

➢ Result

216 clinical cases has collected from 2 hospitals until 2022, with details as follows:

Gender Distribution of the Cases

Gender	Number of Cases
Male	139
Female	77
Total	216

Age Distribution of the Cases

populations	Age	Number of Cases
	1month-< 3 year	1
pediatric	3-<12 year	1
	12-<18 year	2
	18-<40 year	12
adult	40-<60 year	78
	≥60 year	122
	Total	216

Indications Distribution of the Cases:

Indications	Number of Cases
Bradycardia	148
Asystole	68
Total	216

Results

Successful Cases	Failed Cases	Total	success rate
184	32	216	85.2%

This PMCF collects 216 cases and 172 cases are successful, the final result of pacing success rate is 85.2%.

Based on Confidence interval calculation formula:

$$p \pm z_{\alpha/2} \sqrt{p(1-P)/n}$$

When $\alpha = 0.05$, $Z_{\alpha/2} = 1.96$

Finally, the two-sided 95% confidence interval of 85.2% is calculated as follows: (80.5%, 89.9%), the lower limit 80.5% is above the target value 58.9%.

The final result of pacing success rate is 85.2% (95%Cl: 80.5%, 89.9%). the lower limit **80.5**% is above the target value **58.9**%, the clinical performance of the Non-invasive external pacing of the product in question has been proved to meet the requirement of SOTA criteria in the industry.

5.4 An overall summary of the clinical performance and safety

Defibrillator/monitor is intended to be used for monitoring, defibrillator and alarming. When unsatisfactory physiological PATIENT states, unsatisfactory functional states of the patient monitor or hazards to the patient or operator due to the patient monitor exists, the Defibrillator/monitor detects alarm conditions and generate alarm signals. For a patient with ventricular fibrillation (VF)/ventricular tachycardia (VT), the effective and timely two-way defibrillation treatment presents high success rate of treatment.

External Defibrillation

The defibrillation success rate is the primary endpoint, a total of 174 cases of the use of the BeneHeart series of defibrillation monitors were collected until 2022. 164 cases are successful, the final result of defibrillation success rate is 94.3% (95%CI: 90.9%, 97.7%). The lower limit 90.9% is above the target value 87.9%, the clinical performance of the external defibrillation function of the product in question has been proved to meet the requirement of recognized level in the industry.

Synchronized Cardioversion

The cardioversion success rate is the primary endpoint, a total of 185 cases of the use of the BeneHeart series of defibrillation monitors were collected until 2022. 175 cases are successful, the final result of defibrillation success rate is 94.6% (95%Cl: 91.4%, 97.8%). The lower limit 91.4% is above the target value 88.9%, the clinical performance of the Synchronized Cardioversion function of the product in question has been proved to meet the requirement of recognized level in the industry.

Internal Defibrillation

The defibrillation success rate is the primary endpoint, a total of 176 cases of the use of the BeneHeart series of defibrillation monitors were collected until 2022. 173 cases are successful, the final result of defibrillation success rate is 97.7% (95%Cl: 95.5%, 99.9%). The lower limit95.5% is above the target value 94.2%, the clinical performance of the Internal Defibrillation function of the product in question has been proved to meet the requirement of recognized level in the industry.

Semi-automated external defibrillation (AED)

The primary endpoint is the defibrillation success rate and sensitivity/specificity, a total of 220 cases of the use of the BeneHeart series of defibrillation monitors were collected until 2022. 140 cases are successful, the result of defibrillation success rate is 93.3% (95%Cl: 89.3%, 97.3%), the lower limit 89.3% is upper than the target value 87.9%.

The result of sensitivity rate is 95.7% (95%Cl: 93.9%, 97.5%), the lower limit 93.9% is upper than the target value 90%.

The result of specificity rate is 98.7% (95%Cl: 98.1%, 99.3%), the lower limit 98.1% is upper than the target value 95%.

The clinical performance of the AED function of the product in question has been proved to meet the requirement of recognized level in the industry.

Non-invasive external pacing

The defibrillation success rate is the primary endpoint, a total of 216 cases of the use of the BeneHeart series of defibrillation monitors were collected until 2022. 172 cases are successful, the final result of defibrillation success rate is 85.2% (95%Cl: 80.5%, 89.9%). The lower limit 80.5% is above the target value 58.9%, the clinical performance of the Non-invasive external pacing of the product in question has been proved to meet the requirement of SOTA criteria in the industry.

Monitor and defibrillator technology has a long history of acceptable and well-understood performance and risk. It can compatible with a high level of protection of health and safety and acceptable according to current knowledge/the state of the art. Based on the clinical data of the equivalent equipment and similar equipment, there are no residual risks and uncertainties or unanswered questions identified, the device is the useful medical equipment that the benefit to weight against the risk of the identified hazards is acceptable.

According to the conclusion of residual risks evaluation, for the intended patients, there is no known side effect that can occur during or after the use of the medical device, no extra preparation should be made. So no residual risk associated with using the medical device should be disclosed.

Factor	Question to consider	Notes
Assessment of H	Benefits of Devices	
1. Type of benefit(s)	 What primary endpoints or surrogate endpoints were evaluated? What key secondary endpoints orsurrogate endpoints were evaluated? What value do patients place on the benefit? 	 monitors are intended to be used for monitoring, displaying, reviewing, storing, alarming and transferring of multiple physiological parameters. Patient monitor improves the efficiency of medical staff in monitoring the physiological parameters of patients Patients put a high value on this treatment because it has the potential to save their lives. Patients are therefore willing to accept the risks of this treatment to achieve the benefit. If the treatment provides timely successful defibrillation, the patient will survive a life threatening cardiac arrest situation and will be able to seek further treatment.
2. Magnitude of the benefit(s)	- For each primary and secondary endpoint or surrogate endpoints evaluated:	The patient monitor complies with the standard test, bench test and usability test to approve the accuracy during monitoring

	o What was the magnitude ofeach treatment effect?What scale is used to	According to the AHA Recommendations Defibrillators are recommended to treat tachyarrhythmias
	measure the benefit?	requiring a shock, the Recommendations level is CLASS I
	o How did the benefit rank on	(STRONG) Benefit >>> Risk, based on B-NR LEVEL
	that scale?	(OUALITY) OF EVIDENCE:
		Defibrillators using biphasic waveforms are preferred over
		monophasic defibrillators for treatment of
		tachyarrhythmias the Recommendations level is
		CLASS He (MODERATE) Denset >> Disk based on
		CLASS III (MODERATE) Benefit >> Risk, based on
		LEVEL B-R (Randomized).
	- Was the study able to	All the parameters can be monitored on single adult,
	predict which patients will	following and neonatal patients with the exception of the
	experience a benefit?	
	- What is the probability	• The CCO and NMT monitoring are intended for adult and
	that a patient for whom the	pediatric patients only.
	device is intended will	• C.O. monitoring is only intended for adult patients.
	experience a benefit?	
	- How did the benefits	
	evaluated vary across sub-	a) Can this study predict which patients will benefit?
3. Probability	populations? (If the study	discoses Prompt discovery and sheak defibrillation and
of the patient	was sufficiently powered	cardionulmonary resuscitation can save a significant proportion
experiencing	for subpopulations, note	of sudden deaths. The probability of patient survival decreases
one or more	specific subpopulations,	by about 7 % $\sim 10\%$ every 1 min delay from falling to
benefit(s)	nature of difference and any	defibrillation.
	known reasons for these	b) What is the probability of the expected benefit to the
	differences.)	patient?
	- Was there a variation in	The successful definition defined in the AHA cardiopulmonary
	public health benefit for	resuscitation guide in 2015 is that ventricular fibrillation is
	different populations?	terminated within 5s after electric shock is applied. When the
	- Even if the benefit is in a	defibrillation success rate is in the range of 85% to 95%, it is
	small portion of the	considered that the product design meets expectations.
	population, do those	c) Are public health benefits vary among different groups?
	patients who would	ventricular normation can occur in any population, and the
		most miniculate readments for venuticular normation are

	experience the benefit value	defibrillation and cardiopulmonary resuscitation. There is no
	it?	evidence from the AHA guidelines that de <unk> brillation</unk>
		outcomes vary between populations with regard to ventricular
		fibrillation.
	- Could the duration, if	Patients can be continuously monitored during the
	relevant, of each treatment	hospitalization period and benefit continuously
	effect, including primary	
4 D	and secondary endpoints be	
4. Duration of	determined? If so, what was	
effect(s)	it?	If the treatment provides timely successful defibrillation,
	- Is the duration of the	the patient will survive a life threatening cardiac arrest
	benefit achieved of value to	situation and will be able to seek further treatment.
	patients?	
Assessment of r	isks of Devices	
5. Severity, type	es, number and rates of harm	ful events (events and consequences):
· Device-related	- What are the device-related	According to section 4.3, No serious adverse events
serious adverse	serious adverse events for	
events	this product?	
· Device-related	- What are the device-related	According to section 4.3, the non-serious adverse events had
non-serious	non-serious adverse events	been all solved and we did risk control measurement.
adverse events	for this product?	
· Procedure-	- What other procedure-	Not found yet
related	related complications may a	
complications	patient be subject to?	
	- What percent of the	
	intended patient population	a) What is the probability of adverse events in the
	would expect to experience a	intended users?
	harmful event?	Since the market release of Mindray D series defibrillators, 131917
	- What is the incidence of	sets of them have been sold, and 25 sets of them have been reported
6. Probability	each harmful event in the	to have the adverse events mentioned above. So the probability of
of a harmful	study population?	adverse events is 25/131917
event	- How much uncertainty is in	b) Is the patient willing to accept the risk of possible
	that estimate?	adverse events while considering the possible
	- How does the incidence of	benefits of the device?
	harmful events vary by	The magnitude of this benefit is either life or
	subpopulation (if	death.So,patients put a high value on this treatment
	applicable)?	because it has the potential to save their lives. Patients are

	- Are patients willing to	therefore willing to accept the risks of this treatment to
	accept the probable risk of	achieve the benefit
	the harmful event, given the	
	probable benefits of the	
	device?	
		. Is the advance event reversible?
	- How long does the harmful	a) is the adverse event reversible:
	event last?	All adverse events are reversible and not harmful to human body.
	- Is the harmful event	They are temporary effects.
7. Duration of	reversible?	b) What measures should be taken for adverse
harmful events	- What type of intervention is	events?
	required to address the	Mindray PMS will regularly collect, analyze, correct and prevent
	hermfel	post-marketing adverse events.
	narmiul event?	
	- What are the consequences	According to section 4.4.1, 4.4.2, 4.4.3, the consequences of
8. Risk from	of a false positive?	a false positive or false negative are identified and verificated
false-positive	- What are the consequences	with safety test bench test usability test risk control
or false-	of a false negative?	measurement
negative	- Is this the only means of	
results for	diagnosing the problem, or is	
diagnostics	it part of an overall diagnostic	
	nlan	
	Through the parameter more	nitoring medical staff have established sufficient conditions to
	provide patients with a better r	nedical monitoring environment and the benefits are obvious
	Although there is also the 1	possibility of false positives and false pegatives in parameter
	monitoring the impact of false positives and false positives is limited and will not ever	
	substantial harm to nationts	se positives and faise negatives is innited and will not cause
	In addition, the persentation mu	mitaring of the nationst monitor has the advantages of simulisity.
	In addition, the parameter monitoring of the patient monitor has the advantages of simplicity	
	of equipment, convenient operation, timeliness, economy, etc. compared with other known ones.	
Conclusion	Therefore, from the perspective of benefit and risk, patient monitor parameter monitoring has	
	obvious benefits, controllabl	e risks, and has strong clinical application popularization
	characteristics.	
	Defibrillator are life-saving devi	ices used in emergency situations. They have been shown to have a
	high benefit for patients with un	derlying diseases that remain undetected until sudden cardiac arrest
	occurs. The time from collapse	to defibrillation is critical in-patient survival. For every minute that
	passes between collapse and def	ibrillation, survival rates from VF SCA decrease 7% to 10%.

In conclusion, given the available information above, the defibrillator's support for patients in cardiac arrest who are unconscious, not breathing, or without circulation the probable benefits outweigh the probable risks.

5.5 Ongoing or planned post-market clinical follow-up

After the product is marketed in the Europe, Mindray will continue to track the success rate of defibrillators to ensure the long-term safety of the product. In the CE region, China, and ROW, we will select several hospitals for follow-up (the content here will be refreshed after the hospital are confirmed). The PMCF is organized and carried out by Mindray's clinical engineers, who will control the quality and progress of data collection. During the clinical follow-up process, we will summarize the clinical follow-up results every six months until the collection of cases is completed to ensure that the product is safe and effective in the clinical.

If there are any emerging risks, complications or unexpected device failures have been detected, the summary of safety and clinical performance shall be updated throughout the life cycle of the device.

Function	Manufacturer's	Alternatives	
Extornal Defibrillation	biphasic waveforms	Monophasic waveform	
External Denormation	defibrillators	defibrillators	
		1. pharmacological	
Synchronous cardioversion	Electrical cardioversion	cardioversion	
		2. radiofrequency ablation	
Internal Defibrillation	internal defibrillation	None	
Semi-automated external	Somi automated defibrillation	manual defibrillation	
defibrillation (AED)	Semi-automated denomination	manual denormation	
		1. transcutaneous pacing	
Non investive externel neeing	avternal paging	2. transvenous pacing	
Non-mvasive external pacing	external pacing	3. percussion pacing	
		4. epicardial pacing	
CPR feedback	CPR feedback	CPR metronome	
ECC	FCG	1. PR (SPO2)	
		2. Ultrasound Cardiogram	

6. Possible diagnostic or therapeutic alternatives

		(UCG)
IBP	Invasive Blood Pressure	Noninvasive Blood Pressure
ТЕМР	Continuous body temperature monitoring	None
CO2	Sidestream CO2	1. colorimetric CO2
602	Mainstream CO2	2. PaCO2
RESP	ECG-derived respiration	 Visual respiratory assessment Acoustic respiratory assessment PPG-derived respiration
SPO2	pulse oximetry (SpO2)	arterial oxygen saturation (SaO2)
NIBP	Oscillometric blood pressure	 Auscultatory blood pressure invasive blood pressure (IBP)

External Defibrillation

Modern defibrillators are classified according to 2 types of waveforms: monophasic and biphasic. Monophasic waveform defibrillators were introduced first, but biphasic waveforms are used in almost all AEDs and manual defibrillators sold today. Energy levels vary by type of device and manufacturer.^[1-3]

Defibrillators with monophasic waveform deliver current in one polarity and were the first to be introduced. They can be further categorized by the rate at which the current pulse decreases to zero. If the monophasic waveform falls to zero gradually, the term damped sinusoidal (MDS) is used. If the waveform falls instantaneously, the term truncated exponential (MTE) is used (figure 1)^[1-8].

Few monophasic waveform defibrillators are being manufactured, but many are still in use, and most use MDS waveforms. As noted above, no specific waveform characteristic (either monophasic or biphasic) is consistently associated with a greater incidence of ROSC or higher survival to hospital discharge rates after cardiac arrest^[1-8].

Figure 1. Monophasic waveforms. A. Damped sinusoidal wave (A) and truncated exponential (B).

Biphasic waveform defibrillator was developed later. The delivered current flows in a positive direction for a specified time and then reverses and flows in a negative direction for the remaining duration of the electrical discharge (figure 2). With biphasic waveforms there is a lower defibrillation threshold (DFT) that allows reductions of the energy levels administrated and may cause less myocardial damage. The use of biphasic waveforms permits a reduction in the size and weight of defibrillators.^[1-8]

Figure 2. A. Biphasic waveform.

		Biphasic		Monophasic
Volume and		lighter and smaller	-	Heavy, Unportable
Weight				
Current market	-	Majority MEDs	-	small part of historical inventory
share	-	Almost all AEDs		
Easy of use	-	Simple, easy	-	old products, not updated
			-	old technology, difficult to use
shock success	-	equivalent or higher	/	
rate				
myocardial	-	less	/	
damage				
energy	-	200 J to 360 J escalating	200	J to 360 J escalating energy (MDS) for adult
		energy (BTE) for Adult	200	J to 360 J escalating energy (MTE) for adult

Synchronous cardioversion

Drug cardioversion or pharmacological cardioversion is to convert an abnormal and potentially dangerous heart rhythm (atrial fibrillation or atrial flutter etc.) into a normal sinus rhythm using oral or intravenous agents (amiodarone, flecainide, ibutilide, propafenone, and vernakalant etc.). Pharmacological cardioversion is a conventional therapy. The main advantages of pharmacological cardioversion are cost effective, avoiding the resource intensive procedural sedation and corresponding risks due to anesthesia procedures comparing to electrical cardioversion. While electrical cardioversion usually has a higher success rate than pharmacological cardioversion in the short-term.

Radiofrequency ablation uses an electric current through wires into the heart to heat up a small area in the atrial chamber tissue to stop it from sending disorder electrical signals to generate the arrhythmias like atrial fibrillation or atrial flutter and restore the rhythm back to normal sinus. Radiofrequency ablation is a more complex and expensive clinical practice than electrical or pharmacological cardioversion. It's usually a scheduled invasive procedure and not suitable for emergency cases unlike cardioversion. Despite being currently the most effective therapeutic option, radiofrequency ablation has not shown desirable results in all patients. The addition of pharmacologic therapy to the routine strategy of catheter ablation enhances the overall success of the procedure.

In clinical practice, electrical or pharmacological cardioversion is a more effective way to restore the patient rhythm in a short-term especially in emergency situations than radiofrequency ablation. For long-term rhythm control, radiofrequency ablation is most effective while the choice of radiofrequency ablation or pharmacologic therapy or a hybrid therapy shall be determined by clinical professionals according to the different conditions of individual patients.

Internal Defibrillation

Cardiac surgery is usually performed on a nonbeating heart; ventricular fibrillation may occur or may be deliberately induced during operation. If a regular rhythm does not spontaneously resume at the end of operation, an electric shock is applied directly to the fibrillating heart to restore rhythmic contraction. Similarly, during thoracotomy, because traditional external defibrillation pads or paddles cannot be placed, only option is to place defibrillation paddles on the surface of the heart for internal defibrillation.

According to our current cognition, the use of internal defibrillation is the only safe, effective and convenient option for ventricular fibrillation during thoracotomy, cardiac surgery or large abdominal surgery.

Semi-automated external defibrillation

Manual defibrillation is designed for health professionals, Professional medical staff judge the patient's vital signs parameters by themselves, and complete the entire defibrillation process (ECG analysis, energy adjustment, charging and discharging) as needed. AED are designed to be used by laypersons who ideally should have received AED training at some point in the past. Generally, AED are designed very intuitive and user-friendly so that even untrained bystanders can perfectly employ them to deliver an electric shock to a VF victim. In contrast with AED, the more sophisticated manual defibrillation used by health professionals can perform other functions but require a skilled operator able to interpret electrocardiograms.

	MED	AED
intended users	 health professionals 	- laypersons received AED training
Key different	- interpret electrocardiograms	- automatic arrhythmia analysis
Point	automatically	

Easy of use	- interpret electrocardiograms	- automatic arrhythmia analysis and charge
	- Set energy and charge	- press button according to the prompt
	– dischage	(Semi-automatic AED) or automatic discharge (Fully automatic AED)

Non-invasive external pacing

Technological developments have provided transcutaneous, transvenous, percussion, epicardial approaches to temporary cardiac pacing in addition to the refinement of external pacing. All approaches, however, are based on the provision of rate support from an external pulse generator via an electrode or electrodes which can be removed easily after a short period of pacing, as many of the situations requiring temporary pacing are transient and resolve spontaneously or have a correctable underlying cause.

Compare with different pacing mode are as follows:

pacing	transcutaneous	transvenous pacing	percussion pacing	epicardial pacing
mode	pacing			
position	chest wall via adhesive electrodes	pacing wires are inserted into the veins via an introducer sheath, and passed through the venous system to the heart	pacing wires are fixed directly to the myocardium (ventricular and often atrial) and are exposed through the skin on the chest wall	middle or lower two thirds of the patient's sternum
use condition	patients cannot be moved or staff with transvenous pacing experience are not immediately available	patients with persistent hemodynamically unstable bradycardia refractory to medical therapy	temporizing measure in exceptional circumstances such as witnessed, monitored in-hospital arrest (eg, cardiac catheterization laboratory) for bradyasystole before a loss of consciousness and if performed without delaying definitive therapy	profound bradycardia resulting in clinical cardiac arrest. p-wave asystole (ventricular standstill).

CPR feedback

Currently, during CPR, doctors mainly use the following two methods to improve CPR compression

accuracy:

1. Use the CPR metronome guidance to improve CPR compression accuracy;

2. Use the CPR feedback technology to improve CPR compression accuracy.

For the first method, because there is no audiovisual feedback, when the CPR compression rate is inaccurate, the user cannot be reminded, and the method can only help the user improve the accuracy of the compression rate, but cannot improve the accuracy of the compression depth.

The second method, because there is feedback, users can adjust the frequency and depth of compressions in real time through the feedback information and achieve optimal compression.

ECG
LCO

Treatments	Advantages	Disadvantages
ECG	ECG monitoring is the most common and accessible and continuous heart rate monitoring method. It can also provide observation of ECG waveform changes, diagnosis of myocardial damage, myocardial ischemia and electrolyte disturbance. ECG remains the gold standard to continuously monitor an infant's HR in the neonatal intensive care unit (NICU). ECG gets reliable signals more quickly than PR.	Delay in signal acquisition due to skin cleaning (all infants are wet at delivery) and lead placement as well as skin fragility in extremely premature infants. There is also the potential of pulseless electric activity, which could be interpreted as HR on an ECG
PR (SPO ₂)	PR is continuous and visible to the whole team, and more precise then palpation and auscultation.	Delay in HR display sometimes up to 2 min, which could potentially delay resuscitation efforts, and inaccuracy of HR measurements due to motion artefacts or poor tissue perfusion
Ultrasound Cardiogram (UCG)	UCG is faster than palpation, auscultation and PO HR, UCG is more accurate than auscultation and palpation HR, and the Whole team can hear HR	UCG HR is difficult to record, and All measurements were performed by the same examiner Needs an extra staff member. UCG Can interfere with resuscitation efforts in terms of crowding

IBP

Treatments	Invasive Blood Pressure (IBP)	Noninvasive Blood Pressure (NIBP)
------------	-------------------------------	-----------------------------------

Measurement method	Invasive blood pressure is a blood pressure monitoring method in which the blood pressure is monitored by direct methods by inserting a cannula into a suitable artery.	Noninvasive blood pressure is a way of monitoring the blood pressure indirectly using a special apparatus.	
Clinical intervention	Required: the cannula is inserted into a suitable vein during the invasive blood pressure monitoring	Not required: a cuff is used which is wrapped around the arm and connected to a monitor during the noninvasive blood pressure monitoring.	
Application	Intensive Care Unit (ICU), Operating theater	Out-patient, tentative diagnosis	
Accuracy	Invasive blood pressure monitoring is a highly accurate method.	Noninvasive blood pressure monitoring is a less accurate method	
Advantages	Accurate measurement of beat-to-beat pressure fluctuations can be used to monitor the blood pressure of patients in a critical health condition.	Noninvasive hence not prone to infections, or clinical manifestation caused by unsterilized needles.	
Disadvantages	Invasive blood pressure method results in harmful side effects due to clinical interventions.	Noninvasive blood pressure monitoring is not very accurate and error-prone.	

ТЕМР

The methods used in body temperature measurement are divided into instrumental methods and mathematical methods. The instrumental approach directly utilizes body temperature measurements from temperature-sensitive sensors and electronics by combining actual and predictive measurements, invasive and non-invasive measurements. From the literature we searched, body temperature measurement mainly includes continuous contact measurement methods, as well as discontinuous measurement methods, including digital thermometers, infrared thermometers, zero heat flux thermometers, and thermal imaging. Temperature monitoring technology mainly includes continuous body temperature monitoring technology and spot measurement technology. Continuous body temperature. Spot measurement is used for temperature screening, which is suitable for different scenarios and has no possibility of substitution. Therefore, the two measurement techniques will coexist for a long time.

TEMP	Continuous temperature	Point measurement technology			
		digital	infrand	zoro hoot flux	thermal
		uigitai	lillaleu	Zero neat nux	imaging

Site	rhinitis, esophagus, bladder, rectum	oral , armpit , rectum	Ear	Forehead	Face
Distance	Contact	Contact	Contact	Contact	10 cm/50 cm
Speed	continuous temperature	6 s	1 s	1 s	1 s
Recordability	Yes	No	No	No	No
Clinical Accuracy	±0.1 °C	±0.1 °C	±0.2 °C	±0.23 °C	±3 °C

CO2

Treatment	Sidestream CO2	colorimetric CO2	Mainstream CO2	PaCO2
Measurement method	continuous	continuous	nuous continuous	
Invasive	Non- invasive	Non- invasive	Non- invasive	Invasive
Quantitative	Quantitative	Qualitative and semi-quantitative	Quantitative	Quantitative
Reuse	Reuse device	Single-use device	Reuse device	Reuse device
Target patients	Intubated and non- intubated patient	Intubated patient	Usually intubated patient	Intubated and non-intubated patient
Real-time	Several seconds delay	Real-time	Real-time	Time delay
Sampling gas	yes	no	no	no

RESP

There are some kinds of respiration rate measurement methods, some methods have high accuracy, some methods are easy to use and some methods are inexpensive. All of which have their own advantages and disadvantages.

	Impedance respiration	Visual respiratory assessment	Acoustic respiratory assessment	ECG- derived respiration	PPG- derived respiration	Tidal volume
Accuracy	High	High	High	Medium	Medium	High
Easy of use	Easy to use	Professional staff	Professional staff	Easy to use	Easy to use	Difficult to use
Time-	Less	More	More	Less	Less	Less

Mindray Confidential. All Rights Reserved.

consuming						
Monitoring coherence	Continuous	Spot Check	Spot Check	Continuous	Continuous	Continuous
Cost	Less	High	High	Less	Less	High

SPO2

The primary purpose of intensive care is to ensure adequate oxygen supply to the organ systems, and the assessment of the patient's oxygen status is usually by drawing the patient's arterial blood to calculate oxygen saturation. Clinically, it is also known as the gold standard for SpO2^[12-2].

Compared with SaO2, SpO2 monitoring has obvious advantages. It can display results conveniently, quickly, and accurately, and conduct continuous non-invasive monitoring. In some cases, it has the function of trend review. It is especially suitable for monitoring the critically ill patients in ICU and during and after the operation, helping the medical staff to find the abnormal results in time, actively find the causes, and make corresponding treatment.

	SpO2	SaO2
Continuity	Continuous	Non-continuous
Operation	Convenience	Complex
Traumatic	non-invasive	invasive
Accuracy	Approximate	Gold standard

NIBP

Blood pressure can be measured in two ways: Invasive and non-invasive. The invasive blood pressure is mainly measured through an intra-arterial catheter. The NIBP measurement is classified into intermittent NIBP measurement (mainly including manual auscultatory blood pressure and automatic cuff oscillometric blood pressure measurement) and continuous NIBP measurement (such as photoplethysmography (PPG) blood pressure measurement and pulse transmission time (PTT) blood pressure measurement) based on whether NIBP is measured continuously

In combination with the maturity of the technology, detailed comparisons are made between the oscillometric NIBP measurement, auscultatory NIBP measurement, and IBP measurement. The results are as follows.

Item	Oscillometric blood pressure	Auscultatory blood pressure	IBP
Measurement method	Non-invasive	Non-invasive	Invasive
General measurement media	Cuff-based	Cuff-based	Catheter-based

Measurement Continuity Intermittent		Intermittent	Continuous
Measurement Process	Manual	Automatic	Automatic
Operation complexity	Difficult	Easy	More Difficult
Target patients	Adults, pediatrics and	Adults, pediatrics and	Adults, pediatrics and
Target patients	neonates	neonates	neonates
General measurement site	Upper arm	Upper arm	Arterial
Clinical investigation	Not required	Clinical investigation shall be carried out according to ISO 80601-2	Not required
Measurement reliability	Higher	High	Higher

7. Suggested profile and training for users

The equipment is intended for use only by clinical professionals who have a clinical education background or under their guidance. It must only be used by qualified medical personnel trained in the operation of the equipment and qualified by training in basic life support, advanced cardiac life support or defibrillation.

For clinical users who install the machine for the first time, the engineer will provide clinical users with practical demonstrations and functional explanations of the machine. In addition to the training of clinical roles, there is also an introduction to the equipment installation function when the engineer is installed, the training content is as follows:

> Introduction of the main unit of the product.

Area 1:

Alarm lamp
 Display screen
 AC power indicator
 Battery indicator
 Service indicator
 Soft keys

Area 2:

1. Silence2. Lead Select Button3. 12-Lead ECG button4. NIBP5. Speaker6. Main Menu7. Selector8. Mark Event Button9. Microphone

Area 3:

- 1. Mode Select knob
- 2. Energy Select button
- 3. Charge button
- 4. Shock button

Recorder:

1. Start/Stop key 2. Indicator 3. Paper outlet 4. Recorder door 5. Latch

Side View:

- 1. IBP1: IBP sensor connector (channel 1)
- 2. IBP2: IBP sensor connector (channel 2)
- 3. NIBP: NIBP cuff connector
- 4. Gas outlet
- 5. T1: Temp probe connector (channel 1)
- 6. ECG: ECG cable connector
- 7. SpO2: SpO2 sensor connector
- 8. T2: Temp probe connector (channel 2)
- CO2: sampling line connector (for microstream CO2 module) or watertrap connector (for sidestream CO2 module)

Rear View:

External Paddles:

Hook 2. Battery 2 3. Battery 1 4. External power input 5. Equipotential grounding terminal
 USB connector 7. Network connector 8. Multifunctional connector 9. VGA connector

Shock button with indicator 2. Charge button 3. Energy Select button

Pads cable, pads, test load:

> Introduction of the basic operation/setting of the product.

Using the Main Menu:

To enter the main menu, press the Main Menu button on the equipment's front.

_	Main Menu				
	Alarm Setup >>	Waves >>			
J	Patient Demographics >>	Others >>			
1	Review >>	High Contrast			
	User Test >>				
		Exit			

Setting the Date and Time:

1. Press the Main Menu button on the front panel, and then select

 $[Others >>] \rightarrow [Configuration >>] \rightarrow enter the required password.$

- 2. Select [General Setup >>].
- 3. Select [Date Format] from [yyyy-mm-dd], [mm-dd-yyyy] and [dd-mm-yyyy].
- 4. Select [Time Format] and toggle between [24h] and [12h].
- 5. Set [System Time].

You can also set system time by selecting [Configuration >>] \rightarrow [View Config] \rightarrow [General Setup >>]. However, you cannot select date format and time format in this case. After the completion of setting system time, exit the configuration mode, and then the system will restart.

Adjusting the Screen Brightness:

1. Press the Main Menu button on the front panel, and then select [Others >>].

2. Set [Brightness] to an appropriate level: 10 is the brightest, and 1 is the least bright.

You can also change screen brightness by entering configuration mode and selecting [Others] from the Configuration Main menu.

Changing Key Volume:

1. Press the Main Menu button on the front panel, and then select [Others >>].

2. Select [Key Volume] and then select an appropriate value. 0 means key volume off and 10 is the maximum volume.

You can also change key volume by entering configuration mode and selecting [Others] from the Configuration Main menu.

Selecting High Contrast Mode:

The equipment has the function of high contrast display so that the user can view the display under high ambient illumination.

Mindray Confidential. All Rights Reserved.

Adjusting Waveform Position:

1. Press the Main Menu button on the front panel, and then select [Waves >>].

2. In the [Waves] menu, set [Wave 2], [Wave 3] and [Wave 4]. Wave 1 is always ECG1, which is unchangeable.

You can also change waveform position by entering configuration mode and selecting [Waveform Setup] from the Configuration Main menu.

> Introduction of the function operation of the product.

AED:

1.Confirm that the patient is unresponsive, not breathing and pulseless.

2.Remove clothing from the patient's chest. Dry the patient's chest and, if necessary, clip or shave excessive chest hair.

3. Apply multifunction electrode pads to the patient as directed on the pads package. Use anterior-lateral

placement.

4. Connect the pads with pads cable, and then plug the pads cable in the equipment's

therapy port.

- 5. Turn the Mode Select knob to AED.
- 6. Follow the screen and voice prompts.
- 7.Press the Shock button, if prompted

Manual Defibrillation:

1. Confirm that the patient is unresponsive, not breathing and pulseless.

2. Remove clothing from the patient's chest. Dry the patient's chest and, if necessary, clip or shave excessive chest hair.

3. Apply multifunction electrode pads to the patient as directed on the pads package. Use anterior-lateral placement.

4. Turn Mode Select knob to Manual Defi, Adjust the energy is necessary.

5. Charge

6. Shock

Synchronized Cardioversion:

Adu 2010-09-09 13:48:19	🔀 Alarm Off	ECG		Select Sync Mode
		•	Local Remote	
Manual	Select Energy: (J)			
	200	Energy: Shocks:	200J 0	
02:35		Enter Sync		Exit

1. Connect the therapy cable and apply the multifunction electrode pads or external paddles to the patient.

2. With the Mode Select knob in Manual Defib position, press the [Enter Sync] soft key to activate the synchronous cardioversion function.

3. Select a lead. The selected lead should have a clear signal and a large QRS complex.

4. Verify that the white R-wave markers appear above R-waves. If the R-wave markers do not appear or do not coincide with the R-waves, for example above the T-waves, select another lead.

- 5. Select energy if necessary.
- 6. Charge.
- 7. Shock.

Noninvasive Pacing:

- 1. Turn the Mode Select knob to the Pacer position.
- 2. Select a lead with an easily detectable R-wave.
- 3. Verify that white R-wave markers appear above the QRS
- 4. Select pacer rate.
- 5. Press the [Start Pacing].
- 6. Verify that white pacing markers appear on the ECG waveform.
- 7. Adjust pacer output until cardiac capture occurs.
- 8. Verify the presence of a peripheral pulse
- 9. Turn the Mode Select knob to the Pacer position.
- 10. Switch the pacer to the Fixed mode.
- 11. If ECG electrodes are applied, use the Lead Select button to select the desired lead.

> Introduction of the maintenance of the product.

Manual Defibrillation Test:

1. Run the equipment on fully charged battery. Move the Mode Select knob to Manual Defib.

2. Connect the external paddles to the equipment and place the paddles on the defibrillator/pacer analyzer.

3. Set the analyzer to Energy Measurement mode. In this case, the energy value should be displayed as 0 or blank.

- 4. Select the energy level to 360J.
- 5. Charge the equipment.
- 6. Verify that the charge tone is issued during charging.
- 7. Press the "Disarm" soft key to discharge the energy internally.
- 8. Verify that a prompt "Charge Removed" appears on the screen and the charge done tone stops.
- 9. Verify that the value measured by the analyzer is 0J or blank.

10. Enter the Configuration Main menu, select [Manual Therapy Setup] and set [Time to Auto Disarm] to [60s].

11. Exit "Configuration Management". The equipment restarts automatically.

12. Set the analyzer to Energy Measurement mode. In this case, the energy value should be displayed as 0 or blank.

13. Select the energy level to 360J.

14. Charge the equipment. Count time after charging is completed. Verify that the prompt "Shock Removed" appears

on the equipment and the energy measured by the analyzer is 0J or blank after 60 seconds.

15. Use multifunctional electrode pads. Repeat Step 3 to Step 14.

Synchronous Defibrillation:

1. Run the equipment on fully charged battery. Move the Mode Select knob to Pacer. Select Fixed mode..

2. Connect the pads cable to the equipment and properly place the pads on the defibrillator/pacer analyzer.

3. Set the analyzer to Pacing Measurement mode. Use test load of 50Ω .

4. On the equipment, set [Pacer rate] to [70ppm] and [Pacer Output] to [30mA].

5. Press the [Start Pacing] soft key. Verify that the pacer rate measured by the analyzer is 70 ppm±1ppm and the pacer output measured is 30 mA±5mA.

6. Press the [Stop Pacing] soft key, and then set [Pacer rate] to [170ppm] and [Pacer Output] to [200mA].

7. Press the [Start Pacing] soft key. Verify that the pacer rate measured by the analyzer is 170 ppm±2ppm, and the measured current is 200 mA±10mA.

8. Harmonized standards and CS applied

EN ISO 14971: 2012 Medical devices - Application of risk management to medical devices
EN 1041:2008+A1:2013 Information supplied by the manufacturer with medical devices
ISO 15223-1:2016: Medical devices-Symbols to be used with medical device labels, labeling and information to be supplied

EN ISO 10993-1: 2009/AC:2010 Biological evaluation of medical devices - Part 1: Evaluation and testing EN 60601-1:2006/A1:2013 Medical electrical equipment--Part 1:General requirements for basic safety and essential performance

EN 60601-1-2: 2015 Medical electrical equipment--Part 1-2: General requirements for basic safety and essential performance-- Collateral standard: Electromagnetic compatibility--Requirements and tests

EN 60601-1-6: 2013 Medical electrical equipment-part 1-6: general requirements for basic safety and essential performance--collateral standard: usability

EN 60601-1-8: 2012 Medical electrical equipment - part 1-8: general requirements for basic safety and essential performance - collateral standard: general requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems

IEC 60601-2-4: 2018 Medical electrical equipment - Part 2-4: Particular requirements for the safety of cardiac defibrillators

IEC 60601-2-25:2011 Medical electrical equipment - Part 2-25: Particular requirements for the basic safety and essential performance of electrocardiographs

IEC 60601-2-27: 2011 Medical electrical equipment--Part 2-27: Particular requirements for the basic safety and essential performance of electrocardiographic monitoring equipment

IEC 80601-2-30:2018 Medical electrical equipment - part 2-30: particular requirements for the basic safety and essential performance of automated non-invasive sphygmomanometers

ISO 81060-2: 2018 Non-invasive sphygmomanometers - part 2: clinical validation of automated measurement type

IEC 60601-2-34: 2011 Medical electrical equipment - part 2-34: particular requirements for the basic safety, including essential performance, of invasive blood pressure monitoring equipment

IEC 60601-2-49: 2011 Medical electrical equipment –Part 2-49: Particular requirements for the basic safety and essential performance of multifunction patient monitoring equipment

ISO 80601-2-61:2011 Medical electrical equipment - part 2-61: particular requirements for basic safety and essential performance of pulse oximeter equipment

ISO 80601-2-56: 2017 Medical electrical equipment - part 2-56: particular requirements for basic safety and essential performance of clinical thermometers for body temperature measurement

ISO 80601-2-55: 2018 Medical electrical equipment - part 2-55: particular requirements for the basic safety and essential performance of respiratory gas monitors

EN 62304: 2015 Medical device software - Software lifecycle processes

IEC 62366-1: 2015 Medical devices - Application of usability engineering to medical devices

EN 1789: 2007+A2:2014 Medical Vehicles and Their Equipment - Road Ambulances

9. Revision history

SSCP revision number	Date issued	Change description	Revision validated by the Notified Body
1.0	2021.06.23	Initial version	☑ YesValidation language:English□ No
2.0	2022.4.12	Supplemented PMCF data in Chapter 5	☑ YesValidation language:English□ No